간행물

동물자원연구 KCI 등재 Annals of Animal Resources Sciences

권호리스트/논문검색
이 간행물 논문 검색

권호

제28권 3호 (2017년 9월) 5

1.
2017.09 구독 인증기관 무료, 개인회원 유료
The present study was conducted to investigate the effects on growth performance, nutrient digestibility, and gut health of broiler chickens when a dietary supplementation of multienzymes was added to diets, containing different energy levels. A total of 480 broiler chickens of similar body weight (Ross 308, 1-day-old) were randomly subjected to four treatments. The dietary treatments included a corn-soybean meal-based diet supplemented with: multienzyme (amylase+protease+ mannanase+xylanase+phytase), 0.05% enzyme, and different energy levels (3010 and 3060 kcal/kg). The experimental diets were fed to the chicks in a mash form for 35 days in two phases (1–21 d, phase I; and 22–35 d, phase II). During the overall period, chicks fed with diets supplemented with multienzymes had a better weight gain (p<0.05) and feed conversion ratio (FCR) than those fed with diets without enzymes. There was no difference in the growth rate and FCR among the chicks fed with diets supplemented with enzymes, even though the dietary energy levels were different. The apparent fecal and ileal digestibility of dry matter, gross, crude protein, calcium, and phosphorus were significantly enhanced (p<0.05). The population of cecal and ileal Lactobacillus spp. was significantly increased (p<0.05), and Clostridium spp. and coliforms were significantly decreased (p<0.05) in diets supplemented with enzymes. Villus height and villus height to crypt depth ratio in the small intestine was also significantly enhanced (p<0.05) in diets supplemented with enzymes. In conclusion, multienzyme supplementation had positive effects on the weight gain of broilers, FCR, digestibility of nutrients, and on the growth of intestinal microbiota.
4,200원
2.
2017.09 구독 인증기관 무료, 개인회원 유료
The present study was conducted to determine the optimal supplementation level of beta-mannanase in the diet of laying hens. A total of 320 Hy-Line Brown layers (80 weeks of age) were assigned randomly into four groups on the basis of laying performance. Each treatment had eight replicates with 10 birds each (80 birds per treatment). Two hens were caged individually. Treatments were basal diet supplemented with 0 (control), 0.04, 0.08, and 0.16% beta-mannanase during the nine-week feeding period. Laying hens fed diets supplemented with increasing levels of beta-mannanase had increased (linear, p<0.05) overall egg production and egg mass. In addition, these hens had greater retention of dry matter, crude protein, gross energy, calcium, and mannan (linear, p<0.05). Dietary beta-mannanase treatments had no effect on blood metabolites such as total carbohydrate, triglycerides, glucose, total protein, and blood urea nitrogen, or excreted ammonia nitrogen and volatile fatty acids. The results obtained in present study indicate that dietary supplementation of beta-mannanase has the potential for improving the performance of laying hens. The optimal supplementation level is 0.04% beta-mannanase in the diet.
4,000원
3.
2017.09 구독 인증기관 무료, 개인회원 유료
This study was conducted to investigate effects of feeding fermented milk on growth, intestinal microorganisms and fecal noxious gas emission in suckling pigs. A total of a hundred birth piglets (Landrace×Yorkshire×Duroc) were randomly assigned into feeding group and control group during suckling period that ten pigs per sow. Fermented milk contained 3.0×108/g of Bacillus and 3.5×108/g of Lactobacillus, and was supplied by top dressing method. Fermented milk fed to the sulking pigs indicated tendency to increase weaning body weight (p=0.052) and average daily gain (p=0.094). Total microbial flora and Escherichia coli in the feces were lower (p<0.05) in the feeding group than the non-feeding group. Reversely, Lactobacillus was higher (p<0.01) in feces of the pigs fed fermented milk than the pigs of the control group. Hydrogen sulfide emitted in feces was decreased in feeding group compared with control group (p<0.05). Similarly, fecal total mercaptans was diminished in the feeding group than the control group (p<0.01). Therefore, the fermented milk fed to the sulking pigs may improved growth and can influence positively intestinal microorganisms and fecal noxious gas emission.
4,000원
4.
2017.09 구독 인증기관 무료, 개인회원 유료
The objectives of the present study were to investigate the effect of five chemical inhibitors on methane production of the pure cultures of methanogens. To examine the methanogenesis inhibition by 2-bromoethane sulfonic acid (BES), 3-bromopropane sulfonic acid (BPS), lumazine, propynoic acid and ethyl 2-butynoate, they were added into the pure cultures of Methanobacterium formicicum KOR-1 and KOR-12, Methanoculleus bourgensis KOR-2, Methanosarcina mazei KOR-3, KOR-7, KOR-9 and KOR-10, Methanosarcina vacuolata (DSM 1232), Methanobacterium bryantii (ATCC 33272), Methanosarcina mazei (ATCC BAA159) and Methanosarcina barkeri (ATCC 43240). Each methanogen was anaerobically incubated at 39℃ for 6 and 10 days, and then methane gas production was measured. All methanogens were sensitive to BES, lumazaine and ethyl 2-butynoate and as the addition levels of the chemicals increased, the methanogenesis was linearly reduced. BPS and propynoic acid failed to inhibit any of the methanogens. There were important differences among species of methanogens regarding their sensitivity to the different inhibitors. In general, the strains of Methanosarcina species were the most resistant to BES, lumazaine and ethyl 2-butynoate and the strains of Methanobacteriales order the least resistant. The different resistances to chemical inhibitors may be caused by different cell membrane structure, substrate utilization for methanogenesis and competition with other microorganisms for electron receptors. In conclusion, differences among methanogens habituating in anaerobic ecosystems, such as the rumen of ruminants regarding their resistance to chemical inhibitors should be considered when strategies of inhibition of methanogenesis are designed.
4,300원
5.
2017.09 구독 인증기관 무료, 개인회원 유료
This study investigated the stress-related metabolites and hormones in blood and compared the muscle structure to identify the reason for blood splash in Hanwoo beef. Five slaughter houses were selected based on the region (Seoul, Gimhae, Jungbu, Naju, and Goryung) and a previous blood splash record. In total, three-hundred eighty blood samples (n=380) and forty-two muscle tissues (n=42) of control and blood splash Hanwoo beef were collected during the slaughter process and beef grading. Blood metabolites were analyzed including glucose, lactate, creatinine, urea-N, and hormones such as cortisol and thyroxin. Muscle fiber, fiber bundle, and capillary wall thickness were measured under microscope. The concentrations of blood glucose, lactate, and urea-N were not significantly different between the control and the blood splash samples. Cortisol and thyroxin levels were not significantly different in both samples. In contrast, the creatinine level was significantly increased (p<0.05) in the blood splash samples. There were also no significant differences observed in muscle fiber, bundles, and capillary wall thickness between the control and the blood splash tissues. In conclusion, blood metabolites, hormones, and muscle fiber showed no differences between the control and the blood splash animal. However, increased creatinine levels may be used as an indicator for identifying blood splash prior to slaughter in Hanwoo.
4,000원