간행물

동물자원연구 KCI 등재 Annals of Animal Resources Sciences

권호리스트/논문검색
이 간행물 논문 검색

권호

제32권 4호 (2021년 12월) 4

1.
2021.12 구독 인증기관 무료, 개인회원 유료
This in vitro study investigated the enhancement of rumen bacterial adhesion on a substrate to increase the digestibility of rice straw in Hanwoo cattle. The rice straw was pretreated with enzymes, probiotics, or ammonia, and the effects on the enhancement of bacterial adhesion and fiber degradation were analyzed using in vitro rumen fermentation. Enzyme treatment included spraying of cellulase and xylanase at 40 and 120 U per g of rice straw, respectively; Saccharomyces cerevisiae culture of 1.0×107 CFU was sprayed as a probiotic treatment per gram of rice straw; ammonia was sprayed at 0.3% per gram of rice straw. Following enzyme treatment, Fibrobacter succinogenes formed a higher adhesion colony than the control group (7.26±0.03 and 8.43±0.20) after 6h and 12h of in vitro culture (p<0.05), respectively. Attachment of Ruminococcus flavefaciens also increased following enzyme treatment (p<0.05) after 6 and 12 h compared to that of the control (5.18±0.06 and 6.60±0.15); and R. albus attachment showed a significant increase compared to that of the control (5.94±0.15) after 6 h of incubation (p<0.05). Probiotic treatment increased attachment of F. succinogenes in comparison with untreated rice straw after 6 h and 12 h of fermentation (p<0.05); R. flavefaciens attachment showed an increase only after 6 h of culture (p<0.05); R. albus was not affected. Attachment of F. succinogenes, R. flavefaciens, and R. albus increased with ammonia treatment after 6 h and 12 h (p<0.05). Dry matter digestibility was higher after the enzyme treatment (3.45±0.21 and 7.04±0.09) than in the control group(1.85±0.08 and 3.94±0.04) after 6 and 12 h of in vitro culture (p<0.05), respectively. It was also higher than that of untreated rice straw after probiotic and ammonia treatments (p<0.05). There was an increase in the enhancement levels of bacterial adhesion depending on the type of fibrolytic bacteria following enzyme, probiotic, and ammonia treatment. These treatments improved digestibility. This enhancement is considered to be greater following enzyme and ammonia treatments than with probiotics.
4,300원
2.
2021.12 구독 인증기관 무료, 개인회원 유료
This study aimed to analyze causality of climatic factors that affecting the yield of whole crop barley (WCB) by constructing a network within the natural ecosystem via the structural equation model. The WCB dataset (n=316) consisted of data on the forage information and climatic information. The forage information was collected from numerous experimental reports from New Cultivars of Winter Crops (1993-2012) and included details of fresh and dry matter yield, and the year and location of cultivation. The climatic information included details of the daily mean temperature, precipitation, and sunshine duration from the weather information system of the Korea Meteorological Administration. The variables were growing days, accumulated temperature, precipitation, and sunshine duration in the season for the period of seeding to harvesting. The data was collected over 3 consecutive seasons—autumn, winter, and the following spring. We created a causality network depicting the effect of climatic factors on production by structural equation modeling. The results highlight: (i) the differences in the longitudinal effects between autumn and next spring, (ii) the factors that directly affect WCB production, and (iii) the indirect effects by certain factors, via two or more paths. For instance, the indirect effect of precipitation on WCB production in the following spring season via its effect on temperature was remarkable. Based on absolute values, the importance of WCB production in decreasing order was: the following spring temperature (0.45), autumn temperature (0.35), wintering (-0.16), and following spring precipitation (0.04). Therefore, we conclude that other climatic factors indirectly affect production through the final pathway, temperature and growing days in the next spring, in the climate-production network for WCB including temperature, growing days, precipitation and sunshine duration.
4,200원
3.
2021.12 구독 인증기관 무료, 개인회원 유료
A laboratory-scale experiment was conducted to evaluate the effect of supplementing commonly used effective microorganisms on the chemical properties of swine liquid manure. Effective microorganisms used in this study were Bacillus subtilis (1.3×109 colony-forming unit (CFU)/ml), Enterococcus faecium (1.9×1010 CFU/ml), Aspergillus oryzae (2.0×109 CFU/ml), Saccharomyces cerevisiae (6.4×109 CFU/ml), Rhodobacter sphaeroides (1.2×108 CFU/ml), and Streptomyces griseus (6.2×108 CFU/ml). Swine liquid manure collected and decanted from a swine farm was used in this study. Treatments included control (distilled water supplementation), Treatment 1 (T1) (mixed microbes, 109 CFU/ml), and Treatment 2 (T2) (mixed microbes, 107 CFU/ml). Microbial mix was supplemented every 3.5 days and aerated six times (15 min each) a day to facilitate compositing. Ten ml of sample was collected at 2-, 4-, 6-, and 7-week intervals for the measurement of pH, ammonia-N, volatile fatty acid (VFA), total nitrogen, total phosphorus, and total potassium. At seven weeks, samples were further collected to analyze biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Ammonia-N was significantly (p<0.05) decreased in T1 and T2 by 36% and 30%, respectively, compared with control (23%). VFAs including butyrate, iso-butyrate, valerate, iso-valerate, and caproate were not detected in T1 from the four-week aerated sample. The BOD and COD were significantly (p<0.05) decreased in T1 by 96% and 58%, respectively. In conclusion, ammonia-N, VFA, BOD, and COD, known as odor indicators, were decreased in T1 and T2 compared with control, suggesting that effective microorganisms are useful for compositing swine liquid manure
4,000원
4.
2021.12 구독 인증기관 무료, 개인회원 유료
The nutrient balances originated from livestock manure in Korea has not being include minor livestock species (e.g., horse, deer, and goat) since their manure excretion unit (MEU), nutrient excretion unit (NEU), and nutrient loading coefficient (NLC) are not known yet. In the present research work, the primary focus had laid therefore on securing domestic MEU for the specified minor livestock species which provides the basis for the computation of NEU and NLC. Moreover, the nutrient potential and economic value of composted manure from minor livestock was assessed on the basis of contents in the inorganic fertilizers such as Urea, (46% N) and Fused superphosphate (20% phosphorus pentoxide). The obtained MEU was found to be 10.52±5.48, 4.07±1.69, and 0.843±0.1 kg/head/day for horse, deer, and goat, respectively. In addition, the measured NLCs of horse, deer, and goat were [N, 0.7; P, 0.9], [N, 0.7; P, 0.6] (Both deer and goat were the same.), respectively. Consequently, the horse, deer, and goat manure have a potential of 3,840.1 ton N/year and 9,390.2 ton P/year as an inorganic fertilizer of urea and fused superphosphate. These findings may facilitate the development of more accurate nutrient budget taking into account both major and minor livestock and improve the manure management measures for land application.
4,500원