This study has suggested an image analysis system based on the Deep Learning for CCTV pedestrian detection and tracing improvement and did experiments for objective verification by designing study model and evaluation model. The study suggestion is that if someone’s face did not be recognized in crime scene CCTV footage, the same pedestrian would be traced and found in other image data from other CCTV by using Color Intensity Classification method for clothes colors as body features and body fragmentation technique into 7 parts (2 arms, 2 legs, 1 body, 1 head, and 1 total). If one of other CCTV footage has recorded its face, the identity of the person would be secured. It is not only detection but also search from stored bulk storage to prevent accidents or cope with them in advance by cost reduction of manpower and a fast response. Therefore, CIC7P(Color Intensity Classification 7 Part Base Model) had been suggested by learning device such as Machine Learning or Deep Learning to improve accuracy and speed for pedestrian detection and tracing. In addition, the study has proved that it is an advanced technique in the area of pedestrian detection through experimental proof.
본 논문에서는 디스플레이의 화질에 영향을 끼치는 중요 요소 중 하나인 색 선명도에 대한 정량화 방법을 제안한다. 먼저, 인지 요소인 lightness, chroma, hue가 각각 독립적으로 변환된 실험 영상들을 제작한다. 실험 영상들의 색 선명도 시각 실험 결과 와 인지 요소들의 통계적 변수인 평균, 표준편차, 변동계수 사이의 regression을 수행한다. Regression 결과에서 통계적으로 유의미한 요소들만을 선택하여 색선명도 평가 모델을 도출한다. 제안하는 정량화 모델의 성능을 검증하기 위하여 시각 실험 결과와 모델에 의해 계산된 수치 사이의 상관계수를 계산한다. 실험 결과를 통해 제안하는 모델의 성능이 비교 대상인 기존 모델의 성능보다 우월하다는 것을 확인할 수 있었다.
본 연구는 실제 현장에서 적용할 수 있는 보다 구체적인 감성 데이터를 제공하기 위한 시도로서, 메이크업의 주요한 색채특성을 평가변인으로 하여 칼라 시뮬레이션 실험 및 분석을 실시하여, 최종적으로 색채감성 분석기법에 의한 이미지 유형별 예측모델을 작성하였다. 그 결과, 「품위있는.귀족적인」, 「깔끔한.여성스러운」, 「강렬한.도발적인」, 「캐주얼한.경쾌한」, 「수수한.부드러운」의 5가지 이미지유형이 추출되었고, 이미지유형별로 이미지와 색채특성간의 정량적 예측모델을 작성한 후, 그 결과를 토대로 이미지유형별 색채팔레트를 제시하였다.
본 논문에서는 프랙탈 부호화시 변환식의 계수를 찾는 과정에서 블럭의 탐색 영역을 줄이기 위해 탐색 영역인 도메인블록의 특성을 화소의 밝기의 평균에 의한 클래스와 분산에 의한 클래스로 분류하여 리스트를 구성한 후 레인지블록과 같은 클래스를 가지는 도메인블록만 검색하도록 하면서 도메인블럭 탐색시 1 차 허용 오차 한계값을 제어하여 부호화 시간을 향상시켰다. 또한 쿼드트리분할법으로 레인지블록의 크기를 가변시켜 변환( w i )의 수를 줄임으로서 압축효율을 높이고 레인지블록의 크기에 따라 탐색 영역의 탐색 밀도를 변화시켜 화질 개선을 시도하였으며 이러한 영상 기법을 24-bpp 컬러 영상 압축에 적용하였다. 먼저 RGB표색계를 휘도신호와 채도신호를 가지는 YIQ표색계로 변환한 후 영상 정보의 일부분만 차지하고 있는 색의 정보를 나타내는 I,Q신호는 공간평균을 취하여 1/4로 축소하여 부호화하고 복원시에 선형 보간법을 이용하여 다시 원 영상으로 확대하였다. 그 결과 영상의 화질에는 거의 손실이 생기지 않았고 서로 독립성이 강한