Background: Pain neuroscience education (PNE) with other therapeutic approaches can reduce pain intensity in patients with Chronic musculoskeletal pain and chronic spine pain by improving quality of life and disability. However, in various clinical trials and reviews, the optimal dose of an intervention combined with PNE is still an area to be studied.
Objectives: To investigated the effect of forward head posture (FHP) with chronic neck pain on the PNE combined with cervical and thoracic mobilization.
Design: A non-randomized, controlled intervention study.
Methods: Thirty-two subjects were allocated to pain neuroscience education combined with cervical and thoracic mobilization group (PCTMG, n=17) and cervical and thoracic mobilization with TENS group (CTMG, n=15). For 6 weeks, the PCTM group applied PNE and cervical and thoracic mobilization and the CTM group applied cervical and thoracic mobilization and TENS. Changes in intervention pre-post pain and kinesiophobia were observed.
Results: Results from the study indicated that statistically significant decrease in VAS and TSK-11 in PCTMG. In CTMG, there was a statistically significant decrease in VAS. And in PCTMG, there was a statistically significant decrease in VAS and TSK-11 than in CTMG.
Conclusion: Therefore, this study confirmed that PNE combined with cervical thoracic mobilization is an effective intervention compared to ervical thoracic mobilization alone in reducing pain and kinesiophobia in FHP with chronic neck pain.
Most exercise for Patellofemoral pain syndrome (PFPS) has focused on selectively strengthening the vastus medialis oblique muscle (VMO). Although open chain knee extension exercises are effective for increasing overall quadriceps strength, they are not always indicated for PFPS rehabilitation. This study was designed to identify the effect of combined posture of lower extremity on Electromyographic (EMG) activity of the vastus lateralis muscle (VL) and VMO during static squat exercises. The subjects were twenty young adult males who had not experienced any knee injury and their Q-angle was within a normal range. They were asked to perform static squat exercises in five various postures using their lower extremities. The EMG activity of the VL and VMO were recorded in five exercises by surface electrodes and normalized by %MVC values derived from seated, isometric knee extensions. The normalized EMG activity levels (%MVC) of the VL and VMO for the five postures of the lower extremities were compared using one way ANOVA with repeated measures. Results of repeated measures of ANOVA's revealed that exercise 3 and exercise 5 produced significantly greater EMG activity of VMO/VL ratios than exercise 1 (p<.05). When the static squat exercise was combined with hip adduction and toes pointed outwardly, the EMG activity of VMO/VL rates was increased. The EMG activity of VMO/VL ratio was highest during static squat exercises performed on a decline squat. These results haveimportant implications for progressive and selective VMO muscle strengthening exercises in PFPS patients.