Real-life time series characteristic data has significant amount of non-stationary components, especially periodic components in nature. Extracting such components has required many ad-hoc techniques with external parameters set by users in a case-by-case manner. In this study, we used Empirical Mode Decomposition Method from Hilbert-Huang Transform to extract them in a systematic manner with least number of ad-hoc parameters set by users. After the periodic components are removed, the remaining time-series data can be analyzed with traditional methods such as ARIMA model. Then we suggest a different way of setting control chart limits for characteristic data with periodic components in addition to ARIMA components.