New carbazole derivatives including coumarin moiety, 7-(3-Carbazol-9-yl-phenyl)-chromen-2-one (C-PCa), 7-(9-Phenyl-9H-carbazol-3-yl)-chromen-2-one (PCa-C), 7-[9-(3-Carbazol-9-yl-phenyl)-9H-carbazol-3-yl]-chromen-2-one (PDCa-C) were synthesized by Suzuki reaction. In film state, maximum UV-Vis absorption of three synthesized compounds appeared in the range 331 to 345 nm. PL spectrum of C-PCa, PCa-C and PDCa-C showed miximum emission wavelength of 449, 467 and 467 nm, respectively. C-PCa showed white emission of current efficiency of 1.16 cd/A, power efficiency of 0.59 lm/W and C.I.E of (0.26, 0.33). PCa-C showed current efficiency of 1.13 cd/A, power efficiency of 0.62 lm/W and C.I.E of (0.19, 0.27). PDCa-C showed the highest current efficiency of 1.34 cd/A, power efficiency of 0.62 lm/W and C.I.E of (0.18, 0.23).
4-methyl-7-(10-(pyren-1-yl)anthracen-9-yl)-2H-chromen-2-one (PAC), 7,7’-(anthracene-9,10-diyl)bis(4- methyl-2H-chromen-2-one) (CAC), 7-Anthracen-9-yl-4-methyl-chromen-2-one(AC), and 7-(naphthalen-1-yl)-2Hchromen-2-one (NC) were synthesized through Suzuki aryl-aryl coupling reaction. Optical and electroluminescence (EL) properties were evaluated by UV-visible absorption, photoluminescence (PL) spectra, and EL devices. Synthesized compounds were used as an emitting layer (EML) in non-doped device with the following structures: ITO/2-TNATA (60 nm)/NPB (15 nm)/synthesized compounds (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). Non-doped devices showed luminance efficiency (L.E.) of 1.38, 1.03, 1.12, and 0.39 cd/A at a current density of 10 mA/cm2.
In this study, we synthesized fluorescent sensors from rhodamine 6G derivatives and hydroxy coumarin. The synthetic routes to the rhodamine 6G derivatives containing hydroxy coumarin are shown in Fig. 1. Two derivatives were synthesized through Schiff base reactions. The structures of the new compounds were confirmed by melting point, 1H-NMR, and GC-MS analyses. The compounds were found to selectively bind to tin (Sn2+) ion by fluorescence titration using various metal cations. Longer carbon chains gave more sensitivity. Sn2+ ions exhibited the strongest fluorescence among the nime ions. The binding analysis using Job plots suggested that compounds form 1:1 complexes with the Sn2+ ions.
The effect of MS medium supplement and coumarin on in vitro microtuber formation of potato was investigated. In vitro tuberization of potato by MS medium supplement differed from cultivars used and a potato cultivar, ‘Superior’, showed significantly highe