The adsorption performance of cupper and zinc ions(Cu2+ and Zn2+) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of Cu2+ and Zn2+ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed Cu2+ and Zn2+ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity(qmax) by the Langmuir model was determined as Cu2+ 99.8 mg/g and Zn2+ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.