Crocin is a carotenoid that may protect cells against oxidative stress by scavenging free radicals particularly superoxide anions. It has been reported that oocyte maturation is influenced by the free radicals generated during in vitro culture (IVC) process. The objective of study was to examine the effect of crocin in in vitro maturation (IVM) medium as an antioxidant on oocyte maturation and embryonic development after parthenogenesis (PA). Cumulus-oocyte complexes (COCs) were collected from ovaries of prepubertal gilts. The basic medium for IVM was medium-199 containing 10% pig follicular fluid, cysteine, pyruvate, epidermal growth factor, kanamycin, insulin, and hormones. Oocytes were treated for 44 hours with crocin at 0, 25, 50, and 100 μg/ml during IVM. Oocytes reached the metaphase II stage were induced for PA and cultured for 7 days in porcine zygote medium-3. Nuclear maturation of oocytes was not influenced by various concentrations of crocin (89.0, 87.3, 84.3, and 94.1% for control, 25, 50, and 100 μg/ml crocin, respectively). IVM oocytes treated with 50 μg/ml crocin showed a higher (P<0.05) intraoocyte glutathione (GSH) contents than untreated oocytes (1.00 vs. 1.29 pixels/oocyte). Blastocyst formation of PA embryos treated with 50 (42.9%) and 100 μg/ml crocin (43.8%) was significantly higher (P<0.05) than oocytes treated with 25 μg/ml crocin (30.5%) but not different from that (35.2%) of untreated oocytes. In summary, crocin increases cytoplasmic maturation in terms of intraoocyte GSH content which may be beneficial for later embryonic development by protecting from harmful effect of reactive oxygen species. Further studies are needed to determine whether the beneficial effect of crocin treatment during IVC would be shown in embryonic development after in vitro fertilization and somatic cell nuclear transfer.
Crocin is a carotenoid that may protect cells against oxidative stress by scavenging free radicals particularly superoxide anions. It has been reported that oocyte maturation is influenced by the free radicals generated during in vitro culture (IVC) process. The objective of study was to examine the effect of crocin in in vitro maturation (IVM) medium as an antioxidant on oocyte maturation and embryonic development after parthenogenesis (PA). Cumulus-oocyte complexes (COCs) were collected from ovaries of prepubertal gilts. The basic medium for IVM was medium-199 containing 10% pig follicular fluid, cysteine, pyruvate, epidermal growth factor, kanamycin, insulin, and hormones. Oocytes were treated for 44 hours with crocin at 0, 25, 50, and 100 μg/ml during IVM. Oocytes reached the metaphase II stage were induced for PA and cultured for 7 days in porcine zygote medium-3. Nuclear maturation of oocytes was not influenced by various concentrations of crocin (89.0, 87.3, 84.3, and 94.1% for control, 25, 50, and 100 μg/ml crocin, respectively). IVM oocytes treated with 50 μg/ml crocin showed a higher (P<0.05) intraoocyte glutathione (GSH) contents than untreated oocytes (1.00 vs. 1.29 pixels/oocyte). Blastocyst formation of PA embryos treated with 50 (42.9%) and 100 μg/ml crocin (43.8%) was significantly higher (P<0.05) than oocytes treated with 25 μg/ml crocin (30.5%) but not different from that (35.2%) of untreated oocytes. In summary, crocin increases cytoplasmic maturation in terms of intraoocyte GSH content which may be beneficial for later embryonic development by protecting from harmful effect of reactive oxygen species. Further studies are needed to determine whether the beneficial effect of crocin treatment during IVC would be shown in embryonic development after in vitro fertilization and somatic cell nuclear transfer.
In the present study, we examined potential roles of glucose and pyruvate in nuclear and cytoplasmic maturation of porcine oocytes. In the presence and absence of 10% porcine follicular fluid (PFF), either 5.6 mM glucose or 2mM pyruvate effect on meiotic maturation and followed development ability. However, DOs doesn't take full advantage of the glucose in medium, only pyruvate can increase MII rate and follow early embryo development ability significance. COCs were matured with 200 uM pentose phosphate pathway (PPP) inhibitor (dehydroepiandrosterone, DHEA) or 2 μM glycolysis inhibitor (iodoacetate, IA), significantly lower levels of GHS in the DHEA an IA treated oocytes and the levels of ROS were higher significantly in the DHEA treated oocytes, treatment with DHEA significantly reduced the intra-oocyte ATP and NADPH level. Blastocysts from DHEA or IA treated group also presented higher apoptosis levels, meanwhile, the percentage of proliferating cells was dramatically lower than the non-treated group. In conclusion, our results suggest that 10% PFF promoted oocytes make full use of energy, glucose metabolism during in vitro maturation inseparable from the cumulus cells, PPP and glycolysis promoted porcine oocytes cytoplasmic maturation by supplying energy and reducing oxidative stress.
The 3-isobutyl-1-methylxanthine (IBMX) is non-selective phosphodiesterase and is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte. The present study was conducted to analyze: (1) nuclear maturation (examined by the Hoechst staining), (2) whether cytoplasmic maturation (examined by the intracellular glutathione (GSH) concentration) of porcine oocytes is improved during meiotic arrest after prematuration (22 h) with IBMX. Before in vitro maturation (IVM), oocytes were treated with 1 mM IBMX for 22 h. After 22 h of pre-maturation, the higher rate of IBMX treated group oocytes were arrested at the germinal vesicle (GV) stage (42.3%) than control IVM oocytes (10.1%). It appears that the effect of IBMX on the resumption of meiosis has shown clearly. In the end of IVM, the reversibility of the IBMX effect on the nuclear maturation has been corroborated in this study by the high proportions of MII stage oocytes (72.5%) reached after 44 h of IVM following the 22 h of inhibition. However, intracellular GSH concentrations were lower in the oocytes treated with IBMX than the control oocytes (6.78 and 12.94 pmol/oocyte, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pre-treated with IBMX for 22 h did not equal that of control oocytes in the current IVM system. These results indicate that pre-maturation with IBMX for 22 h may not be beneficial in porcine IVM system.