발정주기와 상관없이 CIDR을 삽입하는 날에 50 mg progesterone, 2.5 mg estradiol benzoate를 근육주사하였다. CIDR 삽입 후 4, 5일에 28 AU FSH (Antorin R10)을 4일 동안 감량법으로 주사하였다. 6, 7회 FSH 주사 후 25 mg, 15 mg 를 각각 주사한 다음, CIDR는 7회 FSH 주사 후 제거하였다. 1회째 주사 후 48시간에 GnRH를 주사하였다. 공란우는 발정확인 후 12시간 간격
This study was carried out to develop the useful inducing method of estrus for Korean native cows. Under the condition of estrus induction by administering for the cows in which corpus luteum (CL) in ovaries was detected by ultrasonography, ovarian responses and the changes of progesterone () concentration against compared with conception rate were observed in cows and heifers. In inducing estrus administering . to the cows which has corpus luteum in ovaries, ovarian reponses, the changes of progesterone concentration, and conception rate were identified and compared. The results attained from the studies were as follows. Significant decreases of CL in size over time after administration were detected in both cow and heifer groups (p<0.001), but not different between groups in the CL regression rate (p>0.05). In addition, the percentage changes relative to the plasma concentration on day 1 after treatment were decreased to below 1ng/ml. The growth rate of follicle was observed as 31% on day 1 and 42% on day 2 in cows, and 34% on day 1 and 97% on day 2 in heifers, resulting that growth of heifers are faster than that of cows (p<0.05). The conception rate after treatment were 60.5% and 64.2% in cows and heifers, respectively. It also indicated that the conception rate after estrus observation with injection was as high as 66.6% while that with timed-artificial insemination (TAI) regardless of the estrus observation was 56%, which means the pregnancy rate of artificial insemination after estrus observation was higher than that of TAI (p<0.05). In the result of all above, there were significant decreases in CL size and the plasma concentration by days but rapid growth in follicles, which has no differences in cows and heifers. The conception rate was commonly high after estrus observation and more than 50% under TAI.
This study was operated to establish induction using ultrasonography by estimating the relation of follicle size and estrus manifestation. Clinical estrus symptoms were observed 97.4% in cows and 87.5% in heifers when overall 55 cows were induced to estrus in a single dose of after verifying CL through ultrasonography, which means estrus hours among those 52 cows showing the clinical estrus symptoms were estimated 2.39 days on cows and for 2.37 days on heifers which showed no differences (p>0.05). The estrus manifestation hours according to the follicle size in cows didn't have any significance each other (p>0.05), though estrus hours was 54 hours (the shortest) with follicle size bigger than 10 mm and were made up within 69 hours. The estrus manifestation hours according to the follicle size in heifers didn't have any significance each other (p>0.05) and took around 42 hours (the shortest) with follicle size of 5mm (the smallest) and were made up within 66 hours. Follicles after injection were ovulated and assigned to many phases as follows; Group 1 (growing phase) - continuously growing into ovulation, Group 2 (growing and static phase) - delaying in growth after the growth of follicles, Group 3 (static and growing phase) - growing after growth delay, Group 4 (regressing and new growing phase) - the follicle is closed and a new follicle grows. In addition, the process of follicle development and estrus hours had no significance each other (p>0.05), though estrus manifestation hours in Group 1 and 2 was relatively short, and in Group 3 and 4 for a relatively long time. In the result of all above, the estrus manifestation hours after injection has no differences accoring to the follicle size in cows and heifers. Therefore, High pregnancy rate is obtained when practicing artificial insemination within 3 days in estrus or TAI in 72 to 80 hours after adminitrating .
This study was carried out to investigate effective condition for producing somatic cell nuclear transfer (SCNT) embryos of Jeju native cattle. As donor cells for SCNT, ear skin cells from Jeju native cattle were used. In experiment 1, the effect of recipient oocyte sources on the development of Jeju native cattle SCNT embryos were examined. Fusion rate of recipient oocyte and donor cell was not different between the Hanwoo and Holstein recipient oocytes (86.0% vs 89.9%). The rate of embryos developing to the blastocyst stage was significantly (p<0.05) higher in Hanwoo recipient oocytes than in Holstein recipient ones (28.2% vs 14.7%). Blastocysts derived from Hanwoo recipient oocytes contained higher numbers of total cells than those derived from Holstein ones ( vs ), although there were no significant difference. The mean proportion of apoptotic cells in blastocyst was not different between the sources of recipient oocytes. In experiment 2, the development of Jeju native cattle and Hanwoo SCNT embryos were compared. Hanwoo oocytes were used as the recipient oocytes. Fusion rate was not different between the Jeju native cattle and Hanwoo SCNT embryos (92.1% vs 92.9%). The blastocyst rate of SCNT embryos was significantly (p<0.05) lower in Jeju native cattle than in Hanwoo (16.9% vs 31.0%). Blastocysts derived from Jeju native cattle SCNT embryos contained smaller numbers of total cells than those derived from Hanwoo ones ( vs ), but there were no significant difference. The mean proportion of apoptotic cells in blastocyst was not different between the Jeju native cattle and Hanwoo SCNT embryos. The present study demonstrated that Hanwoo recipient oocytes were more effective in supporting production of Jeju native cattle SCNT embryos, although Jeju native cattle SCNT embryos showed reduced developmental capacity when compared to Hanwoo SCNT embryos.
This study was designed to determine whether low-density lipoporoteins (LDL) extracted from egg yolk in extender improve the function of Korean Jeju Black Bull semen. The semen was cryopreserved with 5% ethylene glycol (EG) or 7% glycerol (G) extenders containing 10% egg yolk (EY), 4% LDL and 5% EY or 8% LDL. Frozen-thawed sperm were evaluated sperm motility, viability, membrane integrity and acrosome integrity. Post-thawed sperm motility has been significantly higher (p<0.05) in 4% LDL + 5% EY (; EG and ; 7% G) than 8% LDL (; EG and ;G). Treatment of 4% LDL + 5% EY-EG () has been significantly improved sperm viability compared to other treatments except 10% EY - EG. Moreover, in membrane integrity, swollen sperm ratio has been only significantly increased (p<0.05) in 4% LDL + 5% EY - EG () among all treatments. In assess to detect acrosome integrity, especially, AR pattern ratio has been significantly decreased (p<0.05) in 4% LDL + 5% EY - EG among all treatments. In sperm viability as time passes, between 4% LDL + 5% EY and 10% EY, there was no significant difference, but 8% LDL was significantly decreased sperm viability in EG (1 and 2 hrs) and G (30 min, 1, 2, 5 and 12 hrs) extender. However, there were no significant differences among all treatments except 8% LDL-G in sperm membrane integrity. 8% LDL-G has been significantly decreased swollen sperm ratio at 5 hrs after thawed. It is concluded from these results that 4% LDL + 5% EY to the freezing extender showed more positive effect on the frozen-thawed spermatozoa in Korean Jeju Black bull.
The 3-isobutyl-1-methylxanthine (IBMX) is non-selective phosphodiesterase and is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte. The present study was conducted to analyze: (1) nuclear maturation (examined by the Hoechst staining), (2) whether cytoplasmic maturation (examined by the intracellular glutathione (GSH) concentration) of porcine oocytes is improved during meiotic arrest after prematuration (22 h) with IBMX. Before in vitro maturation (IVM), oocytes were treated with 1 mM IBMX for 22 h. After 22 h of pre-maturation, the higher rate of IBMX treated group oocytes were arrested at the germinal vesicle (GV) stage (42.3%) than control IVM oocytes (10.1%). It appears that the effect of IBMX on the resumption of meiosis has shown clearly. In the end of IVM, the reversibility of the IBMX effect on the nuclear maturation has been corroborated in this study by the high proportions of MII stage oocytes (72.5%) reached after 44 h of IVM following the 22 h of inhibition. However, intracellular GSH concentrations were lower in the oocytes treated with IBMX than the control oocytes (6.78 and 12.94 pmol/oocyte, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pre-treated with IBMX for 22 h did not equal that of control oocytes in the current IVM system. These results indicate that pre-maturation with IBMX for 22 h may not be beneficial in porcine IVM system.
Various small molecules can be used to control major signaling pathways to enhance stemness and inhibit differentiation in murine embryonic stem cell (mESC) culture. Small molecules inhibiting the fibroblast growth factor (FGF)/ERK pathway can preserve pluripotent cells from stimulation of differentiation. In this study, we aimed to evaluate the effect of pluripotin (SC-1), an inhibitor of the FGF/ERK pathway, on the colony formation of outgrowing presumptive mESCs. After plating the zona pellucida-free blastocyst on the feeder layer, attached cell clumps was cultured with SC-1 until the endpoint of the experiment at passage 10. In this experiment, when the number of colonies was counted at passage 3, SC-1-treated group showed 3.4 fold more mESC colonies when compared with control group. However, after passage 4, there was no stimulating effect of SC-1 on the colony formation. In conclusion, SC-1 treatment can be used to promote mESC generation by increasing the number of early mESC colonies.
The synovial tissues are a valuable MSCs source for cartilage tissue engineering because these cells are easily obtainable by the intra-articular biopsy during diagnosis. In this study, we isolated and characterized the canine MSCs derived from synovial fluid of female and male donors. Synovial fluid was flushed with saline solution from pre and post-puberty male (cM1-sMSC and cM2-sMSC) and female (cF1-sMSC and cF2-sMSC) dogs, and cells were isolated and cultured in advanced-DMEM (A-DMEM) supplemented with 10% FBS in a humidified 5% atmosphere at . The cells were evaluated for the expression of the early transcriptional factors, such as Oct3/4, Nanog and Sox2 by RT-PCR. The cells were induced under conditions conductive for adipogenic, osteogenic, and chondrogenic lineages, then evaluated by specific staining (Oil red O, von Kossa, and Alcian Blue staining, respectively) and analyzed for lineage specific markers by RT-PCR. All cell types were positive for alkaline phosphatase (AP) activity and early transcriptional factors (Oct3/4 and Sox2) were also positively detected. However, Nanog were not positively detected in all cells. Further, these MSCs were observed to differentiate into mesenchymal lineages, such as adipocytes (Oil red O staining), osteocytes (von Kossa staining), and chondrocytes (Alcian Blue staining) by cell specific staining. Lineage-specific genes (osteocyte; osteonectin and Runx2, adipocytes; PRAR-, FABP and LEP, and chondrocytes; collagen type-2 and Sox9) were also detected in all cells. In this study, we successfully established synovial fluid derived mesenchymal stem cells from female and male dogs, and determined their basic biological properties and differentiation ability. These results suggested that synovial fluid is a valuable stem cell source for cartilage regeneration therapy, and it is easily accessible from osteoarthritic knee.
Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at in 5% incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at /min in a Kryo 360 (planner 300, Middlesex, UK) and kept into . Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.
Although embryonic stem cells (ESCs) or ES-like cells are reported from many mammalian species other than the mouse, the culture system for murine ESCs may not be suitable to the other species. Previously many other research groups have modified either human or mouse ESC culture systems for bovine ESC culture. In this study, we compared three different culture mediums consisting of DMEM, -MEM or KnockOut-DMEM (KO), which are modified from human or mouse ESC culture system, for the generation of bovine ESCs. In this study, some pre-requisite events which are important for establishment and long-term propagation of ESCs such as inner cell mass (ICM) attachment on feeder cells, primary colony formation and sustainability after passaging. Once the ICM clumps attached on feeder cells, this was designated as passage 0. In regards to the rate of ICM attachment, -MEM was superior to the other systems. For primary colony formation, there was no difference between DMEM and -MEM whereas KO showed lower formation rate than the other groups. For passaging, the colonies were split into 2~4 pieces and passed every 5~6 days. From passage 1 to passage 3, DMEM system seemed to be appropriate for maintaining putative bovine ESCs. On the other hand, -MEM tended to be more suitable after passage 6. Although -MEM support to maintain a ES-like cell progenies to passage 15, all three culture systems which are modified from human or mouse ESC culture media failed to retain the propagation and long-term culture of putative bovine ESCs. Our findings imply that more optimized alternative culture system is required for establishing bovine ESC lines.