Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of IFN-γ. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.
Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors that regulate many critical processes involved in early folliculogenesis and oocyte maturation. In this study, effects of GDF9 and BMP15 treatment during in vitro maturation of porcine oocytes upon development after parthenogenetic activation were investigated. Neither GDF, BMP15 alone nor in combination affects the number and viability of cumulus cells or the rates of oocyte maturation and blastocyst development. However, the treatment of GDF9 on porcine oocytes increased the number of trophectodermal (TE) cells of blastocysts derived from activated oocytes (P<0.05). The treatment of BMP15 increased the cell numbers of both inner cell mass (ICM) and TE cells (P<0.05). The treatment with the combination of GDF9 and BMP15 further increased the numbers of ICM and TE cells, compared with GDF9 or BMP15 treatment alone (P<0.05). In conclusion, the treatment of GDF9 or BMP15 (or both) enhanced the quality of blastocysts via the increased number of ICM and/or TE cells.
The purpose of this study was to examine the effects of taurine and vitamin E on sperm characteristics damaged by bromopropane (BP) in pig. We evaluated toxicity of BP on viability, membrane integrity and mitochondrial activity of spermatozoa. 1-BP (0, 2.5, 5.0, 10, and 50 μM), 2-BP (0, 2.5, 5.0, 10, and 50 μM), taurine (0, 5.0, 10, and 25 μM) and vitamin E (0, 50, 100, and 200 μM) were treated in fresh boar semen for 6 h. 10 and 50 μM of 1-BP and 2-BP inhibited sperm viability, membrane integrity and mitochondrial activity in fresh boar semen (P<0.05). 25 μM of taurine increased sperm viability and membrane integrity (P<0.05), 100 μM of vitamin E enhanced viability and mitochondrial activity of sperm (P<0.05). Finally, 10 μM of 1-BP and 2-BP was co-treated with taurine (25 μM) and vitamin E (100 μM) in the fresh boar semen. The co-treated samples did affected viability, membrane integrity and mitochondrial activity of sperm. In conclusion, taurine and vitamin E can improve and maintain sperm quality in fresh boar semen.
This study was conducted to evaluate the effects of type of culture media (BM, G2, OS, TCM, and MEM) on B6D2F1 mice oogenesis. In the present study, B6D2F1/CrljOri F1 mice were utilized in order to maximize oogenesis. Also we used TCM-199, Dulbecco's medified Eagle's medium (DMEM), embryo culture medium (Fertilization medium, Cleavage medium, Blastocyst medium), G series medium and One step medium. In vitro maturation was highest in BM followed by the order of OS, MEM, TCM and G2 (90±2.8% > 88±3.2% > 85±4.9% > 78±10.2% > 64±7.7%, respectively). To note, the G2 group was statistically different compared to other groups (p<0.05). On the other hand the fertilization rate was highest in the G2 group followed by BM, OS, TCM, and MEM (87±7.2% > 85±6.9% > 74±14.0% > 71±13.8% > 2±1.4%, respectively). The MEM group was significantly lower compared to other groups (p<0.05). The developmental rate was highest in the OS group followed by the G2 group and the BM group albeit no statistical significance was noted (73±11.6% > 71±9.2% > 66±10.4%). Of note, all cells of the TCM and MEM groups were died during embryonic development. The zona hatched rate (51±9.8% vs. 50±9.1% vs. 47±7.2% for BM, G2, and OS respectively) and attached rate (45±12.3% vs. 38±16.1% vs. 37±11.5% for BM, G2, and OS respectively) were not different amongst groups. No difference was found in total cell numbers (74±13.9 vs. 64±9.2 vs. 76±6.7 for BM, G2, and OS respectively), ICM cell numbers (20±1.9 vs. 14±1.8 vs. 15±2.1), TE cell numbers (55±12.5 vs. 49±10.7 vs. 61±5.9), % ICM (30±2.8% vs. 24±7.0% vs. 22.8±2.2%) and ICM:TE ratio (1:2±0.5 vs. 1:3.1±0.8 vs. 1:3.1 ±0.5) amongst groups. In summary, these results can provide fundamental data to maximize culture condition for in vitro fertilization on B6D2F1 mice.
This study was conducted to evaluate the effects of different volume (100 μl vs. 2 ml) of microdrop culture on B6D2F1 mice oogenesis. In the present study, B6D2F1/CrljOri F1 mice were utilized in order to maximize oogenesis. Also we used TCM-199, Dulbecco's medified Eagle's medium (DMEM), embryo culture medium (Fertilization medium, Cleavage medium, Blastocyst medium), G series medium and One step medium. Blastulation rate was not different between groups (58.4±2.9% vs. 61.2±4.8%). Zona hatched rate (38±15.4% vs. 27±3.4%) and attached rate (55±13.9% vs. 46±3.9%) did not differ by the volume of culture media. Total cell numbers (59.8±9.7 vs. 70.3±8.7), ICM cell numbers (15.8±0.6 vs. 16.8±1.5), TE cell numbers (44.0±9.7 vs. 53.6±7.3), % ICM (26.4±2.9% vs. 23.8±3.3%) and ICM:TE ratio (1: 2.8±0.4 vs. 1: 3.2±0.6) were not different between groups (i.e., 100 μl vs. 2 ml). These results show that the capacity of the culture medium did not effect the cell numbers of B6D2F1 mice blastocysts. In summary, these results can provide fundamental data to maximize culture condition for in vitro fertilization on B6D2F1 mice.
In this study, to improve the in vitro development of various cells including cloned embryos, the effects that isoproterenol and melatonin have on in vitro development of porcine parthenogenetic oocytes were investigated. Parthenogenetic activation was induced with electrical stimulation, BSA and 6-DMAP treatment. 10-7 M of melatonin and isoproterenol (10-10, 10-12 and 10-14 M) were supplemented for in vitro maturation (IVM) and in vitro culture (IVC) medium, with different concentrations. When isoproterenol and melatonin were supplemented in IVM medium with different concentrations, there was no significant (P<0.05) difference of maturation rate in the treatment groups as well as in that of only melatonin. As isoproterenol and melatonin were supplemented in IVM medium with different concentrations, blastocyst rates of isoproterenol 10-12 M treatment group (37.1%) were significantly (P<0.05) higher than control group (26.0%). Isoproterenol and melatonin were supplemented in IVC medium with different concentrations, then the cleavage rate of 10-12 M isoproterenol treatment group (82.2%) was significantly (P<0.05) higher than the group that melatonin was only supplemented (70.9%). There was no difference of blastocyst rate between the treatment groups. When isoproterenol and melatonin were supplemented for IVM+IVC medium with different concentrations, the cleavage rate of 10-12 M isoproterenol treatment group (92.5%) was significantly (P<0.05) higher than the control group (82.8%) and the group that melatonin was only treated (81.6%). The blastocyst rate of 10-12 M as 45.6% was significantly (P<0.05) higher than control group (25.2%) and melatonin treatment group (31.2%). The cell number of blastocyst in 10-12 M isoproterenol treatment group 35.5±3.4 was significantly (P<0.05) highest. The results of this study showed that the development rate of IVC when both isoproterenol and melatonin were supplemented was higher than when melatonin was only supplemented. Therefore, it is concluded that isoproterenol is rather effective in the activation of melatonin. 10-7 M melatonin and 10-12 M isoproterenol were considered suitable concentration.
Cryopreservation has been applied successfully in many mammalian species. Nevertheless, pig embryos, because of their greater susceptibility to cryoinjuries, have shown a reduced developmental competence. The aim of this study was to evaluate the survival status of vitrified-warmed porcine embryos. Forced blastocoele collapse (FBC) and non-FBC blastocysts are vitrified and concomitantly cultured in culture media which were supplemented with/without fetal bovine serum (FBS). Porcine vitrified-warmed embryos were examined in four different methods: group A, non- FBC without FBS; group B, non-FBC with FBS; group C, FBC without FBS; group D, FBC with FBS. After culture, differences in survival rates of blastocysts derived from vitrified-warmed porcine embryos were found in group A∼D (39.5 (A) vs 52.5 (B) and 54.8 (C) vs 66.7% (D), respectively, p<0.05). Reactive oxygen species (ROS) level of survived blastocysts was lower in group D than that of another groups (p<0.05). Moreover, total cell number of survived blastocysts was higher in group D than that of other groups (p<0.05). Otherwise, group D showed significantly lower number of apoptotic cells than other groups (2.0±1.5 vs 3.2±2.1, 2.8±1.9, and 2.7±1.6, respectively, p<0.05). Taken together, these results showed that FBS/FBC improves the developmental competence of vitrified porcine embryos by modulating intracellular levels of ROS and the apoptotic index during the vitrification/warming procedure. Therefore, we suggest that FBS and FBC are effective treatment techniques during the vitrification/warming procedures of porcine blastocysts.
The objective of this study was to investigate the result of in vivo embryo collection and pregnancy rate after embryo transfer using sex-sorted sperm of Korean brindle cattle. Donor Korean brindle cattle superovulation treated by decreasing dose of FSH injection. Embryos were recovered on 7 days after the third artificial insemination. Control group semen straw used artificial insemination contained 20 million sperm. Sex-sorted semen straws contained 4 million sperm or 10 million sperm. As for the result of the recovery of the in vivo embryos derived from sex-sorted sperm, the number of transferable embryos was significantly highly recovered to be 6.20±2.28/donor from the control group and was significantly lowly recovered to be 1.57±1.72/donor from the group treated at a sperm concentration of 10×106 (p<0.05). The number of unfertilized embryo was 0.8±1.30/donor in control group which was significantly lower than the group treated at a sperm concentration of 4×106 (p<0.05). However, there was no significant difference in the number of undeveloped ova between control and treatment groups. Pregnancy rate after embryo transfer was shown to be 35.00% in control group and 12.50% in treatment group. The karyotype analysis of the calf derived from sex-sorted sperm resulted in a similar chromosomal distribution pattern (2n=60, XX) compared to those of common Korean native cattle.
This study was to investigate effect of progesterone (P4) on prostaglandin (PG) synthases and plasminogen activators (PAs) system in bovine endometrium during estrous cycle. Endometrium tissues were collected from bovine uterus on follicular and luteal phase and were incubated with culture medium containing 0 (Control), 0.2, 2, 20 and 200 ng/ml P4 for 24 h. The PGF2α synthase (PGFS), PGE2 synthase (PGES), cyclooxygenase-2 (COX-2), urokinase PA (uPA), and PA inhibitors 1 (PAI-1) mRNA in bovine endometrium were analyzed using reverse transcription PCR and PA activity was measured using spectrophotometry. In results, COX-2 was higher at 2 ng/ml P4 group than control group in luteal phase (p<0.05), but, it did not change in follicular phase. Contrastively, PGES was significantly increased in 2 ng/ml P4 group compared to control group in follicular phase, but there were no significant differ among the treatments in luteal phase. uPA was no significant difference between P4 treatment groups and control group in both of different phase. PAI-1 was decreased in 20 ng/ml P4 group compared to control group in follicular phase (p<0.05). PA activity was decreased in 2 ng/ml P4 group compared to other groups in follicular and luteal phase (p<0.05). In conclusion, we suggest that P4 may influence to translation and post-translation process of PG production and PA activation in bovine endometrium.
We developed a polymerase chain reaction (PCR)-based molecular method for sexing and identification using sexual dimorphism between the Zinc Finger-X and -Y (ZFX-ZFY) gene and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for mitochondrial DNA (mtDNA) cytochrome B (CYTB) gene in meat pieces and commercial sausages from animals of different origins. Sexual dimorphism based on the presence or absence of SINE-like sequence between ZFX and ZFY genes showed distinguishable band patterns between male and female DNA samples and were easily detected by PCR analyses. Male DNA had two PCR products appearing as distinct two bands (ZFX and ZFY), and female DNA had a single band (ZFX). Molecular identification was carried out using PCR-RFLP of CYTB gene, and showed clear species classification results. The results yielded identical information on the sexes and the species of the meat samples collected from providers without any records. The analyses for DNA isolated from commercial sausage showed that pig was the major source but several sausages originated from chicken and Atlantic cod. Applying this PCR-based molecular method was useful and yielded clear sex information and identified the species of various tissue samples originating from livestock.