Melatonin (N-acetyl-5-methoxytryptamine) is the major neurohormone secreted during the night by the vertebrate pineal gland. The circadian pattern of pineal melatonin secretion is related to the biological clock within the suprachiasmatic nucleus (SCN) of the hypothalamus in mammals. The SCN coordinates the body's rhythms to the environmental light-dark cycle in response to light perceived by the retina, which acts mainly on retinal ganglion cells that contain the photopigment melanopsin. Calbindin-D9k (CaBP-9k) is a member of the S100 family of intracellular calcium- binding proteins, and in this review, we discuss the involvement of melatonin and CaBP-9k with respect to calcium homeostasis and apoptotic cell death. In future studies, we hope to provide important information on the roles played by CaBP-9k in cell signal transduction, cell proliferation, and homeostasis in vivo and in vitro.
Polar body was usually used as a determinant of oocyte's maturation. Polar body morphology could reflect the embryo quality and implantation competence. This review only focuses on morphology of the first polar body and embryo developmental rate in the presence or absence of polar body. However, it is very difficult to describe whether polar body has any effects on embryo development in vitro or in vivo. Further intensive research is needed to determine its function on embryo development.
To enhance the embryo preservation technology and better application of embryo transfer technique to the field (dairy science or animal reproduction. etc.), we examined the viabilities of bovine embryos produced in vitro and in vivo after cryopreservation according to their developmental stage and thawing temperature. Bovine embryos from in vivo/vitro fertilization (Hanwoo) were examined at day 7, 8, and 9. Survival rates and total cell numbers of in vivo fertilized embryos were as follows: morulae 68.8% and ; blastocysts 80.5% and ; expanded blastocysts 77.4% and , respectively. Rates of embryo development for blastocysts and expanded blastocysts after thawing were significantly higher than that of morula stage embryos (p<0.05). While survival rates of in vitro fertilized embryos according to developmental stage showed no significant difference among groups (morula 67.9%; blastocyst 74.3%; and expanded blastocyst 79.4%), total cell numbers were significantly lower than those of other groups (morula ; blastocyst ; and expanded blastocyst ) For the viability according to thawing temperature, survival rate was higher in .
Salivary lipocalin (SAL1) is a member of the lipocalin protein family that has a property to associate with many lipophilic molecules and was identified as pheromone-binding protein in pigs. Our previous study has shown that SAL1 is expressed in the uterine endometrium in a cell type- and implantation stage-specific manner and secreted into the uterine lumen in pigs. However, function of SAL1 in the uterus during pregnancy in pigs is still not known. To understand physiological function of SAL1 in the uterine endometrium during pregnancy in pigs, it needs to elucidate the ligand(s) for SAL1. Thus, to identify the ligand for SAL1 in the porcine uterus, we collected uterine luminal fluid from pigs on day 12 of pregnancy by flushing with PBS. Proteins from the uterine luminal fluid were separated by ion exchange chromatography and gel filtration. Fractions containing SAL1 protein were pooled and concentrated. Immunoblot analysis confirmed successful purification of SAL1. Then, we extracted lipids from the purified SAL1 protein and analyzed the lipids by liquid chromatography-mass spectrometry, and predicted to be steroid hormones and prostaglandins as SAL1 ligands. Results in this study showed that SAL1 protein in the uterine secretions has a small lipophilic molecule as a natural ligand. Further characterization of ligand extracted from purified SAL1 will be useful for understanding physiological function of SAL1 during pregnancy and its application to increase the pregnancy rate in pigs.
The purpose of this study was to determine the effect of different feeding ratios of whole crop barley silage on the embryo production in Hanwoo donors. All donors were basically fed 2.5 kg concentrate daily. Donors were divided into three groups according to the different feeding of forage; hay 70% and rice straw 30% (control, n = 21), whole crop barley silage 80% and rice straw 20% (T1, n = 25), and whole crop barley silage 60% and rice straw 40% (T2, n = 23) fed based on TDN 6.70/ BW 500 kg. All Hanwoo donors received a CIDR together with injections of 1 mg estradiol benzoate and 50 mg progesterone (, Day 0). Four days later, they were superovulated with 28 mg FSH twice daily IM in decreasing doses over 4 days. Then donors received 2 doses of (25 and 15 mg) with the 5th and 6th injections of FSH on Day 6. CIDR were withdrawn at the 6th FSH injection and the donors received GnRH 36 h after the second injection. The donors were artificially inseminated twice, at 8 and 24 h after GnRH, and embryos were recovered 7 or 8 days after the 1st insemination. The flush rate of the donors following positive superovulation responses did not differ among groups (76.2~96.0%, p>0.05). The number of corpus luteum (CL) at embryo recovery also did not differ among groups (10.6~14.0, p>0.05). Furthermore, the mean numbers of total ova (9.4, 10.5 and 12.0) and transferable embryos (5.3, 12.0 and 6.5) did not significantly differ among the control, T1 and T2 groups, respectively (p>0.05). However, mean concentrations of serum of the T1 (64.2 ng/ml) and T2 groups (55.7 ng/ml) were higher than that of control group (43.3 ng/ml, p<0.01), while serum cholesterol concentrations in the control (105.8 mg/dl) and T2 groups () were significantly lower than in the T1 group (121.1 mg/dl, p<0.05). Conclusively, whole crop barley silage can be fed a good substitute for hay forage for Hanwoo donors. Furthermore the ratios of whole crop barley silage 60% and rice straw 40% might be more worthful for embryo production.
To establish a protocol of estrus induction and synchronization in European mouflon, we performed artificial insemination using frozen-thawed semen and exogenous hormones. CIDR was inserted into vaginas of four mouflons for 16 days. A day before removal of CIDR, PG 600 was injected intramuscularly. was injected when removing CIDR. Artificial insemination was cervically conducted with injecting LHRH 48 hours after CIDR withdrawal. Even though no pregnancy was confirmed, estrous signs were notified like open cervix, congestion of vaginal wall and discharge of cervical mucus. Further research in the wild sheep would be needed for development of artificial breeding methods and advancing sustainability of domestic zoos.
The beneficial effect of glycerol as a cryoprotectant, especially for sperm cryopreservation, has been shown in many studies. However, glycerol is toxic to living cells, and boar sperm in particular show greater sensitivity to glycerol than sperm from other domestic animals. Amides have been studied as alternative cryoprotectants for freezing stallion sperm. Sperm frozen in methylformamide or dimethylformamide as cryoprotectants show similar motility when thawed compared with sperm frozen in glycerol. We evaluated the cryoprotective effects of dimethylformamide on boar sperm freezing. To test the effect of amides, the concentration of boar semen was adjusted to , and seminal plasma was removed using Hulsen solution. After centrifugation, the pellet was diluted in modified-Modena B extender. Lactose-egg yolk (LEY) extender was used as the cooling extender. The freezing extender was madeed aaddition of the optimal amount of glycerol and amides to LEY-Glycerol-Orvus ES Paste extender, and this extender was used for the second dilution. Diluted sperm were frozen in liquid nitrogen using the 0.5 mL straw method. Sperm frozen in extender with glycerol as a cderol were compared with those frozen in extender including the different amides. Sperm were tested for motility, viability, the sperm chromatin structure assay, and normal apical ridge after thawing. The percent of motile sperm diluted in glycerol was as high as that in the stallion study (61%). Dimethylformamide showed positive effects on sperm quality and was better than glycerol. Methylformamide provided similar sperm quality as glycerol. Therefore, dimethylformamide is useful for reducing cryoinjury in boar sperm and is expected to be useful as an alternative cryoprotectant.
As a simple and economical method for in vitro produced embryos, we have used BSA instead of serum for the production and embryo transfer of Hanwoo in vitro fertilized (IVF) embryos and obtained the following results: 1) When using serum (FBS; fetal bovine serum) or BSA-containing culture media as the initial culture media for immature oocytes, it is regarded as inappropriate to add only BSA to the culture solutions from maturation of the immature oocytes to development stage culture, but serum still needs be added though there is no significant difference in the concentration, with a change from 5% to 10%. 2) The results of culturing IVF embryos after development (4 cell stage) in the Medium199 solutions containing BSA instead of serum (FBS) showed that 0.3% BSA concentration is not optimal and 0.5% or higher BSA concentration has no significant difference among 0.5%, 0.7%, 1% and 2% (p > 0.05). 3) The post-freezing survival ratio after development in 5% FBS-Medium199 showed that 1% BSA concentration of the culture solution is the most suitable in the BSA concentrations of 0.3% (51%), 0.5% (67%), 0.7% (69%), 1% (77%) and 2% (75%). 4) The pregnancy rates of the transplanted fresh(not frozen) blastocyst had no significant concentration dependency (p > 0.5), and the average pregnancy rate was 63.8%. 14% of overweight calves were found among the calves given birth to by the transfer of IVF blastocysts cultured in the serum-added culture solution, but none was found in the experimental groups in which BSA was added instead of serum.
Mongolia has 80% livestock of total agriculture industry, 170,000 farms are engaged, 2,500,000 of cows that were beef and dairy cows are raised. Despite of Mongolian has great application with milk, there are not clear differences between cow and dairy cattle, and the production of milk is also low. But the milk suppliers are varied (horse, sheep, goat, etc), so that the total milk production is 500 thousand ton per year. It's really considerable to improve the breed of owing to many problems with big differences among milk qualities. For carrying out for first year project, artificial insemination project was operated with 3rd grade Holstein semen that were imported from S. Korea, and initiation and field training were also carried out through appropriate AI technique we developed for Mongolia environment. Local information research and MOU conclusion were done with professor D. Altangerel in May , 2009, and development for AI technique and AI equipments were supplied for Mongolia breeding and natural environment in July in 2009. All cows were treated by synchronization for AI. To do this, injection were treated for luteal phase cow, if it wouldn't work, try again after 11 days. After confirmation of estrus, AI and AI training were carried out with sperm injection in the uterus or cervix by rectum-vagina method which is common worldwide, the most effective artificial insemination technique. If cows were return to next estrus cycle, second AI was carried out about approximately 21 days after artificial insemination. After 2 months, all cows not showing return estrus should be taken pregnancy test. Every pregnant cow will be cared thoroughly. Total 48 cows administrated by for synchronization and after 48 hours 45 cows (93.8%) showing estrus were detected and then artificial inseminate them within who 8 cows (27.8%) showed return estrus. Therefore, Using for synchronization is effective to use for Mongolia breeding conditions. There are possibility of base for food production after all, including increase of livestock production in Mongolia by improvement of breeding cow with AI and embryo transfer project.
Two postmortem male and female reticulated giraffes were examined. The adult male giraffe showed sigmoid flexure of penis similar to most ungulates. Epididymis was well-developed and divided with head, body and tail parts. On the tip of penis, there was a urethral process. At the necropsy of a 20-month-old and nulliparous giraffe, ovaries, oviducts, two uterine horns with a septum and a cervix were distinctively shown. Understanding reproductive organs of giraffes would be beneficial to succeed in artificial breeding on this species especially in the difficult situation of importing hoofed animals.