Cellular cyclic adenosine-3’ 5’-monophosphate (cAMP) modulator is known as meiotic inhibitor and can delays spontaneous maturation in IVM experiment. Among many cAMP modulators, the role of Pituitary adenylate cyclase activating polypeptide (PACAP) on IVM isn’t known. The purpose of this study is to improve the maturation of oocytes derived from follicles ≤ 3 mm in diameter through PACAP as meiotic inhibitor during pre-in vitro maturation (pre-IVM). First, we checked PACAP and its receptors in cumulus cells and, to establish the optimal phase and concentration of PACAP for pre-IVM, we conducted chromatin configuration assessments. As a result, the rate of GV (Germinal Vesicle) according to duration of pre-IVM was significantly decreased 12 h and 18 h after IVM (87.1 and 84.1%, respectively) compared to 0 h (99.4%). When COC was cultured for 18 h, the GV rate in the 1 μM of PACAP treatment group (82.1%) was significantly higher than any other PACAP treatment groups (60.5, 64.1, 74.4 and 69.9 %, respectively). So, we divided into four groups as follows; MF (the conventional IVM group, obtained from follicle from 3 to 6 mm in diameter), SF (the conventional IVM group, obtained from follicle ≤ 3mm in diameter), Pre-SF(-)PACAP (IVM group including 18 h pre-IVM without 1 μM of PACAP, obtained from follicle ≤ 3mm in diameter) and Pre-SF(+)PACAP (IVM group including 18 h pre-IVM with 1 μM of PACAP, obtained from follicle ≤ 3mm in diameter). To examine the effect of PACAP during pre-IVM, we investigated analysis of nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. In cumulus cells, PACAP receptors, ADCYAP1R1 and VIPR1 were detected but were not detected in oocytes. After IVM, the Pre-SF(+)PACAP had the highest Metaphase II rate (91.7%) among all groups (P<0.05). The GSH levels in the MF and Pre-SF(+)PACAP were significantly higher than in the other groups (P<0.05) and ROS levels was no significant difference among all groups. In conclusion, these results indicated that even though the oocytes were derived from SF, pre-IVM application of PACAP improved meiotic and cytoplasmic maturation by regulating intracellular oxidative stress.
We observed the external genitalia and uterus of a 24-month-old freemartin Hanwoo. The vulva was smaller than observed in a normal female Hanwoo, while the clitoris was larger in the freemartin. The angle between the external genitalia and the perineum also varied. Upon internal genital examination, the uterus of the freemartin was a thin tube approximately 18 cm in size and had not differentiated into a normal uterus and uterine horns.
This study was conducted to determine the effect of pentoxifylline levels on sperm motility, survival rate, sperm membrane integrity of frozen semen and fresh-extended equine semen in Jeju cross-bred horses. As a result of sperm characteristic comparison depending on pentoxifylline levles at 30 minutes post-thaw, the progressive motilities were 53.25±2.87 (4mM pentoxifylline) and 50.28±2.14 (8mM pentoxifylline) and significantly higher compared to the control group(40.09±5.15) and other treatment group (16mM pentoxifylline, 41.27± 2.82). The progressive fast motility were 22.44±1.62 (4mM pentoxifylline,) and 22.74±3.07 (8mM pentoxifylline) and significantly higher compared to the control group (13.47±1.48) and other treatment group (16mM pentoxifylline, 14.66±3.68) (p<0.05). As a result of sperm characteristic comparison depending on pentoxifylline levles at 30 minutes post-thaw were 68.96±1.64 (4mM pentoxifylline) and 67.90±6.72 (8mM pentoxifylline) and significantly higher compared to the control group (53.48±4.84) and other treatment group (16mM pentoxifylline, 58.14±2.65) (p<0.05). In conclusion, these results suggest that treatment groups with 4mM and 8mM pentoxifylline were higher compare to equine seperm mobility and the control group and treatment groups with more than 16mM pentoxifylline has a negative effect on sperm characteristics. After thawing, the total motility in post-thawed equine sperm has increased by 10 percent for 1 hour. these results suggest that pentoxifylline contributes to the improvement of the equine sperm motility and characteristics in post-thawed semen.
The purpose of this study was to investigate the effects of the concentration of seminal plasma in aerobic and anaerobic conditions on the total motility(TM) and the progressive motility(PM) of spermatozoa in long term preservation of cooled equine semen. We also examine the pregnancy rates after artificial insemination using fresh, cooled or frozen semen, and different durations of cooled-preserved equine semen. In the aerobic state of cooledpreserved semen, As the increase of preserved duration to 24h, 48h, 72h, and 96h, TM tended to decrease in each of different concentrations of formalin-containing experimental group, TM tended to decrease regardless of the concentrations of SP. In different concentrations of SP, TM of without seminal plasma(SP W/O) group tended to be higher than that of SP 20%, SP 33% and SP 50%, especially TM of SP W/O group was significantly higher than other groups at 96 h (p<0.05). PM was higher in the groups of SP W/O and SP 20% than in the groups of SP 33% and SP 50% from 24 h to 72 h in cooled-preservation, especially PM of SP W/O group was significantly higher than other groups at 96 h (p<0.05). In the anaerobic condition of cooled-preserved semen, the results of TM and PM at different concentrations of SP were similar to the results in the aerobic condition although there was a difference in the ratio. The pregnancy rates of fresh-cooled, cooled-preserved and frozen semen were 66.3%, 60.7% and 34.5%, respectively, and the pregnancy rate of frozen semen was the lowest. We also found that it is possible to pregnancy after artificial insemination using 72 h cooled-preserved equine semen. There was similar of the pregnancy rates in the different month from April to August.
Developmental aspects of chicken embryos showed dramatic difference compared with those of mammals and consequently, such difference in various developmental events leads to different feasibility in both clinical and industrial application. We have concentrated on the studies for using of chicken bone marrow cells and currently we found number of unique cellular properties. Through this article, we reviewed characteristics and cell signaling of osteogenic cells during endochondral ossification in chicken long bone.
In the last several decades, cell therapy research has increased worldwide. Many studies have been conducted on cell therapy, and have revealed that transplanted cells did not survive for long, and implanted cells remained inactive causing immune rejection depending on the patient’s condition. Therefore, studies on cell-free therapy need to be conducted. To overcome these limitations, an alternative is the use of supernatant from cells, called “conditioned media (CM).” During in vitro cell culture, culture media supply nutrients to maintain cell characteristics and viability. In the culture, cells not only consume nutrients but also release beneficial proteins and substances, which are called “secretome.” CM from cells can be stored for a long time and is easy to handle. Moreover, secretome in CM can also be measured; exact amount of secretome is important to set the standard value for disease treatment. Here, we reviewed studies on CM and confirmed that various secretomes from CM were identified in these studies. Moreover, these findings could benefit cell and animal studies in future. In conclusion, CM could be a potential candidate for an alternative to cell therapy.
Adenomyosis is a benign gynecological disease frequently affecting women of reproductive age. It has a negative impact on the quality of life, causing bleeding disorders, dysmenorrhea, chronic pelvic pain, and infertility. However, the molecular mechanisms involved in adenomyosis development remain unclear. This paper summarizes the reports found in the MEDLINE database on the molecular mechanisms involved in the development and progression of uterine adenomyosis. The literature search included the following terms: “adenomyosis,” “adenomyoma,” “pathogenesis,” “molecular mechanisms,” and “gynecological disorders.” Only peer-reviewed, English-language journal articles were included. This review focuses on the molecular genetics, epigenetic modifications, and pivotal signaling pathways associated with adenomyosis development and progression, which will provide insights into and a better understanding of its underlying pathophysiology.