Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin (Nestin+ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that Nestin+ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of Nestin+ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of Nestin+ MSCs in uncultured and cultured BMPCs. The percentage of Nestin+ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of Nestin+ MSCs. The presence of Nestin+ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of Nestin+ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of Nestin+ MSCs in cultured BMPCs.
As a part of the effort to improve post-transfer survival rate of embryos in Korean black goats, a technique for laparoscopic uterine transfer of blastocysts was carried out. A total of 26 transferrable embryos (morula to expanded blastocysts) were transferred to 13 recipient goats via transabdominal laparoscopic method. In consequence of our hormone protocol, 65% of the recipients (13/20) were found to have synchronized estrus. After confirmation of corpus luteum in each recipient goat, a Babcock laparoscopic forceps was inserted into the lower abdominal cavity to hold a uterine horn and fasten it near the peritoneum without causing injury. Then 7.5cm long 16G IV catheter was inserted directly into the uterine lumen through the abdominal wall. After removal of the stylet of the IV catheter, the embryo transfer tube (identical in size to the stylet and loaded with blastocysts) was inserted into the uterine lumen through the catheter to unload the embryos. Of the 13 estrus synchronized recipients, 9 were transferred blastocysts and 4 were transferred molurae (2 embryos in each recipient) in uterine ipsilateral to the ovary with corpus luteum. Four of the 9 recipients which blastocysts were transferred using this method has been confirmed pregnant (44.4% pregnancy rate).
It is very difficult to get the information about semen quality analysis in transgenic pigs because of limited numbers and research facilities. Therefore, in the present study, we analyzed the semen quality of transgenic boars generated for xenotransplantation research. Briefly, the semen samples were collected from 5 homozygous α1,3-Galactosyltransferase knock-out (GalT-/-) transgenic boars and immediately transported to the laboratory. These semen samples were decupled with DPBS and conducted to analyze semen parameters by a computer-assisted semen analysis (CASA) system. The boar semen were examined all 12 parameters such as total motility (TM), curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), and hyperactivated (HYP), etc. In results, among the 5 GalT-/- boars, three boars (#134, 144, and 170) showed normal range of semen parameters, but #199 and 171 boars showed abnormal ranges of semen parameters according to standard ranges of semen parameters. Unfortunately, #171 boar showed azoospermia symptom with rare sperm counts in the original semen. Conclusively, assessment of semen parameters by CASA system is useful to pre-screening of reproductively healthy boar prior to natural mating and artificial insemination for multiplication and breeding.
Embryo transfer (ET) could be a relevant tool for genetic improvement programs in horses similar to those already underway in other species and produce multiple foals from the same mare in one breeding season. However, there have been no reports describing equine embryo transfer performed in Korea. In the present study, we performed an equine embryo collection and transfer procedure for the first time. We examined the embryo collection and pregnancy, size of embryo during the incubation period after collection, and progesterone (P4) and estradiol-17ß (E2) concentrations in mare’s serum at embryo collection and transfer. A total of 16 donors responded to estrus synchronization; estrus was induced in 12 donors and 4 recipients, and artificial insemination was successful in 10 donors and six blastocysts were collected from donors. Of these blastocysts, we monitored the size of blastocysts for 3 day during incubation and transferred 2 blastocysts to a recipient, with 1 successful pregnancy and foal achieved. The dimensions of equine embryo at day 7 to day 9 were 409 μm, 814 μm and 1,200 μm. The serum P4 and E2 concentrations were 7.91±0.37 ng/μL and 45.45±12.65 ng/μL in the donor mare, and 16.06±3.27 ng/μL and 49.13±10.09 ng/μL in the recipient mare.