The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in Vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in Vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in Vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in Vitro maturation of pig oocytes.
The oocyte undergoes various events during In vitro maturation (IVM) and subsequence development. One of the events is production of reactive oxygen species (ROS) that is a normal process of cell metabolism. But imbalances between ROS production and antioxidant systems induce oxidative stress that negatively affect to mammalian reproductive process. In vitro environments, In vitro matured oocytes have many problems, such as excessive production of ROS and imperfect cytoplasmic maturation. Therefore, In vitro matured oocytes still have lower maturation rates and developmental competence than in vivo matured oocytes. In order to improve the IVM and In vitro culture (IVC) system, antioxidants, vitamins were added to the IVM, IVC medium. Antioxidant supplementation was effective in controlling the production of ROS and it continues to be explored as a potential strategy to overcome mammalian reproductive disorders. Based on these studies, we expect that the use of antioxidants in porcine oocytes could improved maturation and development rates.
The aim of this study was to investigate change of plasminogen activators (PAs) and their inhibitors (PAIs) mRNA and protein expression level by heat stress in porcine endometrial cells. The endometrial epithelial cells were isolated from endometrial epithelium in porcine uterus and cultured in different temperature conditions (38.5 and 41.5℃) for 24 h. Expression of urokinase-type PA (uPA), tissue-type PA (tPA), PA inhibitor-1 (PAI-1) and -2 (PAI-2) mRNA in epithelial cells were analyzed using reverse transcription-PCR and protein levels were measured by immunofluorescence. In result, mRNA expression of uPA, tPA, PAI-1 and PAI-2 were decreased in 41.5℃ than 38.5℃ culture condition, however, significant differences were no detected. uPA, tPA and PAI-2 protein were mainly expressed in nucleus, whereas PAI-1 was distributed in cytoplasm and nucleus. uPA and tPA protein levels were increased by heat stress treatment and significant difference was only detected in tPA level (p<0.05). In contrast, two types of PAIs protein level were decreased in 41.5℃ cultured group compared with 38.5℃ group. In present study, tPA protein expression was upregulated by heat stress in porcine endometrial cells. This result suggest that change of tPA by heat stress may be related to blood flow into uterus and intrauterine microenvironments, and could directly and indirectly influence to reproductive performance in pigs.
The purpose of this study was to examine the effects of taurine and vitamin E on ovarian granulosa cells damaged by bromopropane (BP) in pigs. We evaluated cell viability, plasma membrane integrity (PMI) and apoptotic morphological change in porcine ovarian granulosa cells. The cells were treated with 1-BP (0, 5.0, 10, and 50 μM), 2-BP (0, 5.0, 10, and 50 mM), taurine (0, 5.0, 10, and 25 mM), and vitamin E (0, 100, 200, and 400 μM) for 24 h. 10 μM 1-BP and 50 μM 2-BP inhibited viability and PMI, and induced apoptosis in porcine ovarian granulosa cells (p < 0.05). Cell viability and PMI were increased by taurine (10 and 25 mM) and vitamin E (100 and 200 μM), and apoptosis decreased (p < 0.05). Finally, the porcine ovarian granulosa cells were co-treated with BPs (10 μM), taurine (10 mM) and/or vitamin E (200 μM). Cell viability and PMI in the co-treated cells were increased, and apoptosis was decreased. In conclusion, taurine and vitamin E can improve cell viability and inhibition of apoptosis in porcine ovarian granulosa cells damaged by bromopropane.
The aim of this study was to evaluate effect of α-linolenic acid (ALA) on viability, acrosome reaction and mitochondrial intact in frozen-thawed boar sperm. The boar semen was collected by gloved-hand method and cryopreserved in 20% egg yolk freezing extender containing ALA (0, 3, 5, and 10 ng/mL) with 0.05% ethanol. The frozen-boar spermatozoa were thawed at 37.5°C for 45 sec in water-bath. The spermatozoa samples were evaluated the plasma membrane integrity, acrosome reaction, and mitochondrial integrity using flow cytometry. In results, population of live sperm with intact plasma membrane was significantly higher in control and 3 ng/mL ALA treatment group than ethanol group (p<0.05). In contract, dying sperms were higher in ethanol group than 3 ng/mL ALA treatment (p<0.05). Acrosomal membrane damage in all sperm population was reduced in 3 ng/mL ALA groups compared with ethanol treatment (p<0.05). However, acrosome damage in live sperm population was no significant difference among the all treatment groups. Mitochondrial integrity was not influenced by ALA treatments in both of live and all sperm population. In conclusion, this results show that supplement of ALA during the cryopreservation process could reduce the membrane damages including plasma and acrosomal membrane, whereas ALA did not influence to mitochondria in boar spermatozoa. Therefore, these results suggest that ALA can protect against the membrane damage derived cryo-stress, and cryopreservation efficiency of boar semen would be improved by use of ALA.
웰빙식품, 건강에 대한 관심 증대로 버섯의 소비량은 꾸준히 증가하고 있으나, 주로 생버섯으로 소비되 고 2차 가공식품의 기능성 구명으로 새로운 용도 개발 연구는 미진한 상황이다. 버섯의 고부가가치 창 출을 위해서는 버섯의 생산 및 단순가공형 산업에서 탈피하여 새로운 신기능성 구명 연구를 통해 새로 운 미래 바이오산업 확대를 위한 용도 창출을 위하여 본 연구를 수행하였다. 연구내용은 버섯류 35종 에 대한 전립선암세포내 PSA발현 억제 효능 및 이를 통해 확인된 버섯자원들의 함유성분 중 암에 관 련된 화합물들에 대한 구조적 상관관계를 분석하였다. 35종의 버섯류는 99% 에탄올 추출 및 물로 추출 후 동결건조하여 공시재료로 사용하였다. 그 결과 35종의 버섯중 느티만가닥(Hypsizigus marmoreus), 눈 꽃동충하초(Cordyceps takaomontana), 차가버섯(Inonotus obliquus), 동충하초(Cordyceps sinensis), 양송이 (Agaricus bisporus) 등에서 전립선암세포내 PSA 발현을 억제하는 효과를 보였다. 이들 버섯들은 면역력 을 높이는데 유효한 성분인 베타글루칸이 다량으로 함유되어 있어 면역력증진에 따른 전립선암세포의 증식 억제에 효과를 나타내고 있는 것으로 사료된다.
본 연구에서는 녹각영지버섯 추출물의 항산화 효과 및 lipopolysaccharide (LPS)/interferon (IFN)-γ로 자극 된 RAW 264.7 대식세포에서 항산화 효과 및 항염증 효과를 조사하였다. 녹각영지버섯의 항산화 활성 을 확인하기 위하여 1,1-diphenyl-2-picrylhydrazyl (DPPH)과 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical 소거 활성 및 reactive oxygen species (ROS) 생성량을 측정한 결과, DPPH radical 및 ABTS radical 소거효과에 대한 IC50은 각각, 80.74, 52.28 ㎍/ml의 radical 소거능이 관찰되었으며 ROS 생성량은 농도 의존적으로 감소하는 것으로 나타났다. 그리고, RAW 264.7 대식세포를 이용하여 항산화 및 항염증 활성을 확인하기 위하여 ROS 및 nitric oxide (NO) 생성량을 측정한 결과, 활성산소 종 ROS와 염증 매개물질인 NO는 투여농도 의존적으로 감소하였다. 또한, 염증과 관련된 inflammatory cytokine의 발현을 농도 의존적으로 억제하여 항염증 활성을 나타내는 것을 확인할 수 있었다. 이상의 결과로부터 녹각영지버섯 추출물은 항산화 및 항염증을 지닌 기능성 소재로 활용이 가능할 것으로 사 료된다.
This study was to investigate effect of progesterone (P4) on prostaglandin (PG) synthases and plasminogen activators (PAs) system in bovine endometrium during estrous cycle. Endometrium tissues were collected from bovine uterus on follicular and luteal phase and were incubated with culture medium containing 0 (Control), 0.2, 2, 20 and 200 ng/ml P4 for 24 h. The PGF2α synthase (PGFS), PGE2 synthase (PGES), cyclooxygenase-2 (COX-2), urokinase PA (uPA), and PA inhibitors 1 (PAI-1) mRNA in bovine endometrium were analyzed using reverse transcription PCR and PA activity was measured using spectrophotometry. In results, COX-2 was higher at 2 ng/ml P4 group than control group in luteal phase (p<0.05), but, it did not change in follicular phase. Contrastively, PGES was significantly increased in 2 ng/ml P4 group compared to control group in follicular phase, but there were no significant differ among the treatments in luteal phase. uPA was no significant difference between P4 treatment groups and control group in both of different phase. PAI-1 was decreased in 20 ng/ml P4 group compared to control group in follicular phase (p<0.05). PA activity was decreased in 2 ng/ml P4 group compared to other groups in follicular and luteal phase (p<0.05). In conclusion, we suggest that P4 may influence to translation and post-translation process of PG production and PA activation in bovine endometrium.
The objective of this study was to investigate the efficiency of nicotinic acid during in vitro fertilization (IVF) in frozen-thawed bull sperm . The ejaculated semen was diluted with Triladyl containing 20% egg-yolk and cryopreserved in liquid notrigen. The frozen sperm was thawed for 45 seconds in the 38℃ water bath. Sperm was diluted with IVF medium (Bovine-Oviduct medium; BO) containing 0, 15, 30 and 60 mM nicotinic acid (NA), which were incubated at 39℃, 5% CO2 for 0, 0.5, 1, 2 and 4h. The characteristics of frozen-thawed sperm were estimated with SYBR14/PI double staining for viability, FITC-PNA/PI for outer acrosomal membrane damage and Rhodamine123/PI for mitochondrial integrity using flow cytometry. And the sperm ability was analysed by Coomassie brilliant blue (CBB) staining for acrosome reaction state and Rose bengal staining for abnormality. Acrosome reaction and abnormality were analyzed using a microscope. In results, sperm viability was significantly higer in 30 mM group than 0 and 15 mM groups at 1 and 2 h (p<0.05). Outer acrosomal membrane damage was significantly lower in 30 mM group than 0 and 15 mM groups at 1, 2 and 4 h (p<0.05). And mitochondrial integrity was significantly higher in 30 mM group than 0 and 15 mM groups at 2 and 4 h (p<0.05). Also, acrosome reaction was significantly lower in 30 mM than 0 and 15 mM groups at 1 and 2 h (p<0.05) and abnormality was lower NA groups than 0 group at 1 h (p<0.05). In couclusion, we suggest that using the thawing medium containing NA for sperm dilution can be benefical for IVF in bulls
The objective of this study was to evaluate the efficiency of sperm cryosurvival in boar sperm separated by Percoll containing antioxidant enzymes. The boar semen was collected into a pre-warmed (37℃) thermos bottle by gloved-hand method and was separated by 65% Percoll with superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) before freezing. The frozen sperm was thawed at 38.5℃ for 45 sec in water-bath for sperm characteristic analysis. The sperm were estimated with SYBR14/PI double staining for viability, FITC-PNA/PI double staining for acrosome reaction, Rhodamine123/PI double staining for mitochondrial integrity and were analyzed using flow cytometry. In results, sperm viability, acrosome reaction and mitochondrial integrity were improved in separated sperm groups compared with unseparated sperm by Percoll (UP) group. Especially, viability was significantly higher in sperm separated by Percoll containing 400 IU CAT group compared with other groups (P<0.05). And acrosome reaction was decreased in sperm separated by Percoll with 300 IU SOD, 400 IU CAT and 0.5 mM GSH groups compared with other groups, however, there were no significantly difference mitochondrial integrity among sperm separated by Percoll with antioxidant enzymes. In conclusion, we suggest that use of Percoll containing antioxidant enzymes for sperm separation will be beneficial for sperm cryopreservation in pigs.
In order to achieve successful in vitro production of embryo, it is necessary to establish intrauterine environment during in vitro culture. Thus, this study was investigated to establish embryo culture system using co-incubated collagen matrix gel (CM) with endometrial epithelial cells (EC). Endometrial epithelial cells were isolated from porcine endometrium at follicular phase, the cells seeded in insert dish for co-incubation with CM-coated culture dish. Then, culture media treated with/without 2.0 IU/ml hCG or 10 ng/ml IL-1β. After incubation for 24 h, the co-incubated insert dishes were removed from CM-coated culture dish before embryo culture. Embryos at 48 h after in vitro fertilization (IVF) were cultured on the dish for 120 h with porcine zygote medium. We determined PTGS-2 expression in the ECs, VEGF protein in co-incubated CM with EC and observed cleavage rate and blastocyst development of embryos at 168 h after IVF. In result, expression of PTGS-2 was higher at co-incubated EC with hCG and IL-1β groups than EC without hCG and IL-1β. The VEGF protein was detected at co-incubated CM with EC, EC treated with hCG and IL-1β groups higher than CM group. Also, cleavage rate was no significantly difference among all group, however, blastocyst development was significantly higher in co-incubated CM with EC treated with hCG group than un-treated groups (p<0.05). Therefore, we suggest that novel embryo culture system using co-incubated collagen matrix gel with endometrial epithelial cells treated with IL-1β is beneficial and useful for enhancing the production of porcine blastocysts in vitro.
본 연구는 생약재로 이용되는 참당귀의 다용도 기능성 소재 개발을 통한 이용가치를 높이기 위하여 효소처리를 활용한 기능성 다당체 분리방법에 대한 연구를 수행하였다. 참당귀의 세포벽 성분 분해를 위한 최적의 효소는 Viscozyme L로 선정되었다. 다당체 분리를 위한 효소처리는 단백분해효소(Alcalase 및 Flavorzyme)와 전분분해효소(Termamyl120L)를 Viscozyme L과 함께 복합적으로 처리한 VAFT처리구가 추출 수율과 총당 함량이 각각 12.20%, 76.80%로 다른 효소처리구(T, AFT 처리구)에 비하여 가장 높았으며, 제거된 전분 함량 역시 29.62%로 가장 높게 나타났다. 또한 비전분다당체 함량이 22.58%로 T 처리구의20.78%과 AFT 처리구의 21.98%에 비하여 유의적(p<0.001)으로 가장 높게 나타나 참당귀 다당체 분리를 위한 최적효소처리 조건으로 선정되었다. 비전분다당체의 주성분인arabinose, galactose의 함량은 대조구보다 T, AFT, VAFT의모든 효소처리구에서 유의적(p<0.001)으로 높게 나타났다.또한 참당귀 다당체의 분자량 분석을 통하여 대조구(491,000Da)에 비하여 VAFT 효소처리구가 13,000Da로가장 저분자화되는 것을 확인할 수 있었다. 따라서 VAFT효소처리에 의한 참당귀 기능성 다당류의 효율적인 분리방법은 참당귀를 활용한 새로운 산업적 기능소재 및 제품 개발에 활용 가능성이 높을 것으로 기대되었다.
Three-dimensional (3D) culture system is useful technique for study of in vivo environment and it was used various experiments. This study was investigated to establish of embryo co-culture system and changes of PAs activity in 3D cultured endometrial cells of pigs. In results, growth of stromal cells into gel matrix were detected only with endometrial and myometrial cells. The most rapid growth of stromal cells were confirmed in 2.5x105cells/ml and gel matrix containing 15% FBS. Expression of urokinase-PA (uPA) after treatment of hCG (0.5, 1.0, 1.5 and 2.0 IU/ml) were higher than without hCG, but, there are not significant difference among the treatment. On the other hand, expression of uPA after treatment of IL-1β (0.1, 1, 10 and 100 ng/ml) were higher than without IL-1β, but, there are not significant difference. Expression of uPA after treatment of estrogen (0.2, 2, 20 and 200 ng/ml) were not difference, but PA activity was significantly decreased (p<0.05). Blastocyst was producing in PZM-3 medium containing FBS and endometrial cells were grown in PZM-3 medium. When embryos development with cultured endometrial cells, cleavage rates were not significant difference and blastocyst were not produced in co-culture with stromal cells and 3D culture system. 3D culture system had similar activity to in vivo tissue and these features are very useful for study of in vivo physiology. Nevertheless 3D culture system was not proper in embryo co-culture system. Therefore, we suggest that 3D culture system with embryo co-culture need continuous research.
The objective of this study was to investigate the changes of oxidative stress and antioxidant enzyme during in vitro development with washing culture oil in porcine embryos. During the culture, the four types of culture oil such as paraffin oil with or without washing and mineral oil with or without washing were examined. The oil was washed with PZM-3 during 7 days and collected oil only. The embryos were stained with CellTrackerTM Red, DC-FDA and Hoechst 33342 to confirm the effects of the oil. As a results, Cleavage rates and total cell number were no difference among the four oil groups. However, ≥16 cell embryos were significantly different in fore type oil treat-ment and blastocyst rate was significantly higher washing paraffin treatment than in other group(p<0.05). Also, the expression of free radical were lower in washing paraffin oil than in other groups (p<0.05). On the other hand, the expression of glutathione were not significant different among paraffin oil with or without washing and mineral oil with or without washing, however washing paraffin oil and washing mineral groups were higher than other treat-ment groups. In conclusion, the washing oil was expected with positive effects on in vitro development in porcine embryos.
This experiment was conducted to investigate effect of brine mineral water (BMW) on growth performance and properties of blood in weaning pigs. Treatments allotted were 0% (general water), 2%, 3% and 5% BMW. In growth trial, a total of 36 weaning pig barrows [(Landrace×Yorkshire)×Duroc] weaned after 21 days with an average initial weight of 5.38±0.89 kg were used. Each treatment had 3 replications of 3 pigs per pen in a randomized complete block design. Weaning pigs were investigated for growth performance, complete blood corpuscle count and blood biochemical assay. In results, growth performance of 2% and 3% treatment groups were significantly higher than other groups (p<0.05). In addition, high density lipoprotein cholesterol was significantly (p<0.05) higher in 2% group than other treatment groups. On the other hand, mean corpuscular volume of supplement of BMW treatment groups were significantly (p<0.05) increased than control. Therefore, this study suggests that supplementation of BMW could improve growth performance and level of red blood cell in weaning pigs.
The objective of this study was to investigate the relationship between fertility and protein pattern change using in vitro fertilization, analysis of sperm characteristics and two-dimensional gel electrophoresis in different pig types. In results, the viability and mitochondria integrity of sperm were higher significantly (p<0.05) but the portions of ac-rosome reaction was lower significantly (p<0.05) in Duroc and F1 (potbellied×PWG miniature pig) than PWG minia-ture. On in vitro fertilization to investigate fertility, the fertility of F1 semen war higher significantly (p<0.05) than in Duroc and PWG miniature pig. On the other hand, protein patterns showed similar function among the different boar semen. Especially, the heat shock 70 kDa 1-like and G patch domain-containing protein 4 were significantly (p<0.05) higher expressed in F1 than in Duroc and PWG miniature pig. The proteins associated with mitochondria in Duroc were significantly (p<0.05) higher expressed than in F1 and PWG miniature pig. The developmental rates to blastocyst stage of oocytes fertilized with sperm of F1 pig were significantly (p<0.05) higher than in PWG miniature pig. However, phosphoglycerate kinase 2 and zinc finger protein 431 were significantly (p<0.05) higher expressed in PWG miniature pig than in F1 and Duroc pigs. In conclusion, the results of the present study indicate that different proteins were expressed in different pig types, and were associated with a sperm functions and embryo develop-ment.
본 연구는 국내 유통 방풍(S. divaricata, P. japonicum, G. littoralis) 한약재의 원산지 판별을 위해 수행 되었다. 이를 위 해, 형태적 특징비교 뿐만 아니라 엽록체(nrDNA-ITS2) 및 핵 DNA 바코드 유전자(cpDNA-matK, psbA-trnH, rpoB2와 rpoC1)를 이용한 염기서열 분석을 수행하였다. 방풍류 3종의 형태적 특징을 비교한 결과, 잎 모양과 거치의 형태에서 가장 큰 차이를 보인 반면, 건조약재의 경우 육안으로 구별하기에 어려움이 있었다. DNA 수준에서의 차이를 비교하기 위해 DNA 바코드 후보 유전자들을 이용한 방풍류 3종의 식물자원 에 대한 염기서열 분석을 수행한 후 판별 마커 개발 가능성이 있는 ITS2와 matK, psbA-trnH 세 primer를 선발하였다. 이 를 국내 유통 한약재에 적용한 경우 방풍은 S. divaricata와, 식방풍은 P. japonicum과, 해방풍은 G. littoralis와 동일한 것 으로 확인되었다. 중국산 방풍은 S. divaricata와 동일종으로 바르게 표기되어 유통되나, 국산 방풍은 P. japonicum과 동일 종으로 식방풍(갯기름나물)의 뿌리를 건조시켜 방풍으로 혼용 유통됨을 확인하였다. ITS2 구간의 염기서열 분석 결과, 식방 풍의 경우 두 그룹으로 나눠져 동일 종 내에 유전적 변이가 있음이 확인되었다. 따라서 본 연구결과 방풍류 3종 판별을 위 해 nrDNA-ITS2와 cpDNA-matK, psbA-trnH의 사용이 유용 할 것이며, 차후 방풍류 한약재의 판별을 위한 마커 개발 연 구의 기초 자료로서 활용될 수 있을 것으로 사료된다.
The aim of this study was to establish a three dimensional (3D) culture system of endometrial cells and to examine the plasminogen activators (PAs) activity in porcine uterine. The 3D culture system in porcine endometrial cells was composed to mixture 3D gel, stromal cells and epithelial cells. The 3D culture system was used to identify normal structure search as uterine tissue and PAs expression in this study. In results, porcine endometrium epithelial cells forming a top monolayer and endometrium stromal cells developed as fibroblast-like within 3D matrix scaffold. Expression of urokinase-type PA (uPA) and tissue-type PA (tPA) were observed during the 3D culture using immunofluorescence. PA activity in 3D-cultured endometrial cells was no significant difference between the tissue type, but 2D culture system were significantly lower than in 3D-cultured endometrial cells (P<0.05). Therefore, basic system and functional aspect of 3D culture could be established with similar system of endometrium tissue. We suggest that this study was assumed applicable as baseline data to investigate mechanism between porcine uterus cells in vitro.
The endometrium undergoes a cyclic growth and tissue remodeling as changes of epithelial cells, and plasminogen activators (PAs) are related to endometrium tissue remodeling. This study was to evulate expression of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) in porcine uterine epithelial cells. In results, the uPA and tPA were expressed in uterine tissue, epithelium and secretory glands in porcine endometrial cell. In addition, the uPA and tPA were expressed in cultured epithelial cells, and it were mainly expressed in cytoplasm. In porcine uterine tissue and epithelial cells, uPA activity was higher than activity in tPA. In PAs mRNA expression levels, uPA mRNA level was significantly higher than tPA mRNA level (P<0.05). The fluorescence intensity of uPA protein was also higher than fluorescence intensity of tPA protein, and uPA protein expression was significantly higher than in tPA protein expression (P<0.05). Therefore, we suggest that a physiological function in porcine uterine epithelial cells should be more influenced by uPA than in tPA during pre-ovulatory phase.
The endometrium undergoes a cyclic growth and tissue remodeling as changes of epithelial cells, and plasminogen activators (PAs) are related to endometrium tissue remodeling. This study was to evulate expression of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) in porcine uterine epithelial cells. In results, the uPA and tPA were expressed in uterine tissue, epithelium and secretory glands in porcine endometrial cell. In addition, the uPA and tPA were expressed in cultured epithelial cells, and it were mainly expressed in cytoplasm. In porcine uterine tissue and epithelial cells, uPA activity was higher than activity in tPA. In PAs mRNA expression levels, uPA mRNA level was significantly higher than tPA mRNA level (P<0.05). The fluorescence intensity of uPA protein was also higher than fluorescence intensity of tPA protein, and uPA protein expression was significantly higher than in tPA protein expression (P<0.05). Therefore, we suggest that a physiological function in porcine uterine epithelial cells should be more influenced by uPA than in tPA during pre-ovulatory phase.