검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2024.10 구독 인증기관·개인회원 무료
        콘크리트 도로포장의 손상은 차량의 이동에 의한 진동, 겨울철 제설제 사용, 동결융해 작용 등이 주요 손상원인으로 나타나고 있다. 이러한 손상을 해결하기 위하여 열화 원인에 능동적으로 대응하는 보수재료 및 방법이 적용되어야 하나, 일반적으로 단면복구, 부분보 수를 반복적으로 사용함으로써, 지속적인 열화 현상의 발생으로 도로포장의 기능을 상실하게 된다. 또한, 기존에 사용되고 있는 보수 재료 중 무기계 보수재료는 폴리머 모르타르, 에폭시수지 모르타르 등이 있다. 이러한 재료는 높은 압축강도를 가지고 있으나, 취성 및 부착력이 약한 단점을 나타내고 있다. 따라서 본 연구에서는 보통포틀랜드시멘트(Ordinary Portland Cement), 칼슘알루미네이트계 재 료인 칼슘설포알루미네이트(Calcium Sulfo Aluminate) 및 비정질 알루미네이트(Amorphous Calcium Aluminate)를 사용한 보수 모르타르의 압축강도 및 내동해성을 평가하였다. 보수 모르타르의 압축강도를 분석한 결과, 비정질 알루미네이트를 사용한 보수모르타르의 압축강 도가 보통포틀랜드시멘트 및 칼슘설포알루미네이트를 사용한 보수 모르타르보다 우수하게 나타나는 것을 확인하였다. 한편, 보수 모르 타르의 내동해성 평가는 ASTM C 666 A법에 준하여 실험을 진행하였다. 그 결과, 칼슘설포알루미네이트 및 비정질 알루미네이트를 적용한 보수 모르타르의 상대동탄성계수가 300사이클에서 약 90%이상으로 나타나 보통포틀랜드시멘트를 사용한 보수 모르타르보다 우수한 내동해성을 나타내었다. 따라서, 칼슘설포알루미네이트 및 비정질 알루미네이트를 적용한 보수 모르타르는 우수한 압축강도 및 내동해성을 나타냄으로써 도로포장의 보수재료로 사용이 가능할 것으로 판단된다.
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Experimental findings pertaining to the mechanical properties and microstructures of calcium sulfo-aluminate (CSA) cement and amorphous calcium aluminate (ACA) cement based-repair mortars incorporated with anhydrite gypsum (AG) are described herein. METHODS : To prepare the mortars, the CSA or ACA as binders were adopted and the ratio of water–binder was fixed at 0.57. For comparison, mortar made of Type I ordinary Portland cement (OPC) was prepared. The fluidity, setting time, compressive and bond strengths and absorption of the mortars were measured at predetermined periods. In addition, the microstructures of paste samples using OPC, CSA or ACA were visually examined through SEM observation. RESULTS : The ACA-based mortars showed the increases in the fluidity, and the acceleration of the setting time. Furthermore, the ACAbased binder effectively enhanced the compressive and bond strengths of the mortars owing to amount of formation of C2AH8 hydrates. Meanwhile, the mortar with ACA showed an excellence absorption. CONCLUSIONS : Comparing with those of CSA-based mortars, the mechanical properties of ACA based-mortars were more remarkable. However, further studies regarding the durability of repair mortars using aluminate-based binders must be conducted to obtain the optimal mixture.
        4,000원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study describes the experimental findings on the mechanical properties of calcium aluminate cement (CAC)-based repair mortars with or without natural cellulose fiber (NCF). Additionally, the effect of adding NCF to the reduction of fugitive dust in the CAC powder was examined. METHODS : To produce mortar, four different levels of NCF (0.0.5, 1.0, and 2.0% by binder weight) were adopted, and the water-binder ratio was fixed at 0.485. The flow, strength characteristics, absorption, and surface electrical resistivity of the mortars were measured at predetermined periods. Additionally, SEM observations were performed to examine the microstructural changes and hydrates formed on the 28 day-mortar samples. RESULTS : The addition of NCF led to a decrease in fugitive dust. Regarding the mechanical properties of the mortars, that with 0.5% NCF exhibited a better performance in terms of strength development and surface electric resistivity compared to those of other mortars. However, the addition of NCF was less effective in the enhancement of the absorption of mortars. Further, we discovered that the microstructures of the mortars with additional NCF were comparatively dense compared to those without NCF. CONCLUSIONS : The appropriate addition of NCF can enhance the performance of CAC-based repair materials. However, further studies on the durability of CAC with the addition of NCF are needed to determine the optimal mixture.
        4,000원
        4.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Experimental findings pertaining to the mechanical properties of calcium aluminate cement (CAC)-based repair mortars incorporated with anhydrite gypsum (AG) are described herein. METHODS : To prepare the mortars, three different levels of AG were adopted and the ratio of water–cementitious materials was fixed at 0.50. For comparison, mortar composed of ordinary Portland cement was prepared. The fluidity, setting time, compressive and bond strengths, absorption and surface electric resistivity of the mortars were measured at predetermined periods. RESULTS : The incorporation of AG increases the fluidity but decreases the setting time of the CAC-based repair material system. However, the AG in the CAC mixes does not effectively enhance the compressive strength of the mortars owing to the decreased formation of CA hydrates, such as CAH10 and C2AH8. Meanwhile, the mortar with 10% AG shows excellence absorption. CONCLUSIONS : The mechanical properties of CAC based-mortars rely significantly on the amount of AG incorporated. However, further studies regarding the microstructure and durability of CAC-AG repair mortars must be conducted to obtain the optimal mixture.
        4,000원
        5.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Recently, the generation of industrial by-products has been increased owing to the increase in electrical power consumption. This experimental study investigated a special mortar development using outstanding benefits of porous structures in heavy oil fly ash (HOFA) and bottom ash (BA) to reduce heat transfer and weight of tunnel repair mortar. METHODS : Based on the concept of materials usable for this objective being porous and light, the physical and chemical properties of heavy oil fly ash and bottom ash were analyzed to determine the application possibility for tunnel repair mortar. In addition to satisfying this primary requirement, the research aimed at determining the relationships between the characteristics of porous structures and effectiveness of reducing weight and thermal conductivity. This study was undertaken on the use of bottom ash as fine aggregate and heavy oil ash as filler in mortar mix proportion. Four different levels of bottom ash (25%, 50%, 75%, 100%, and 5%), and 10%, 15%, and 20% of heavy oil fly ash were investigated to determine the proper replacement amount within the designed specification. According to the analytic results on the effectiveness of both by-products and chemical additives, the repair mortar with optimum mixture proportion was investigated using various tests including thermal conductivity and porosity. RESULTS : The use of porous by-products increased the demand for mixing water in obtaining the required flowability, but the compressive strength did not decrease significantly in proportion by adding an amount of bottom ash. Based on the results, bottom ash can be replaced with aggregate as much as 50%, but adding an amount of heavy oil ash is suggested as below 10% in formulation. CONCLUSIONS : The optimized repair mortar, which was produced by conclusive formulation, was evaluated as a high-performance material to repair tunnels with the effectiveness of porous and remarkable physical properties.
        4,000원
        6.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, experimental findings regarding the frost resistance of concrete incorporated with mineral admixtures such as fly ash (FA) and ground granulated blast-furnace slag (SG) are presented. METHODS : To evaluate the performance of the abovementioned concretes under repeated freezing and thawing environments, based on the ASTM C 666 standard, the relative dynamic modulus of elasticity and mass ratio measurements are performed regularly. Furthermore, based on the ASTM C 672 standard, the concretes are exposed to 4% CaCl2 and NaCl salt solutions along with repeated 50 cycles of freezing and thawing. Subsequently, the scaling resistance is evaluated based on the scaled-off mass content and visual examination. RESULTS : SG is less effective in enhancing the scaling resistance of concrete compared with FA. However, the concrete incorporated with SG is more resistant to repeated freeze-thaw actions compared with OPC concrete. Meanwhile, compared with OPC concrete, the concrete incorporated with FA indicates a similar performance in terms of scaling resistance and better resistance against repeated freeze-thaw actions. CONCLUSIONS : The frost resistance of concrete depends significantly on the types of mineral admixtures used in concrete. This emphasizes the importance of selecting the appropriate binder to achieve durable concrete pavements in cold climate regions.
        4,000원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the mechanical properties of ternary blended cement concrete incorporated with pulverized reject ash (PRA) or pulverized fuel ash (PFA) based on a comparison with those of ordinary Portland cement (OPC) concrete. METHODS : To produce the concretes, the level of OPC replacement is set at 60%, which comprises 30%~45% ground granulate blast furnace slag and 15%~25% of fly ash (FA). The FA can be categorized into PFA, 4PRA (fineness 3,930 cm2/g3), and 8PRA (fineness 7,840 cm2/g3). The compressive strength, surface electric resistivity, initial absorption coefficient, and chloride ion penetrability of OPC and the ternary blended cement concrete are measured at predetermined periods after water curing. RESULTS : It is discovered that the mechanical properties of concrete with 8PRA are better than those of OPC concrete. The performance of 4PRA concrete is worse than that of 8PRA concrete, indicating that the fineness of the PRA can affect the mechanical properties of the ternary blended cement concrete. CONCLUSIONS : The use of PRA is feasible for the production of ternary blended cement concrete, provided that the appropriate mix design and grinding technology are used.
        4,000원
        9.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this experimental study, the resistance of blended cement concrete containing air-cooled slag (AS) and water-cooled slag (WS) to freeze–thaw action was investigated. For comparison, the durable performance of ordinary Portland cement (OPC) concrete exposed to a similar damage environment was also evaluated. METHODS : Based on the ASTM C 666 standard, the relative dynamic modulus of elasticity, mass ratio, surface electric resistivity, and compressive strength of blended cement concrete specimens were periodically measured and compared with those of OPC concrete to evaluate the durability of concrete exposed to the freezing-thawing environment. In addition, microstructural characteristics of deteriorated concrete parts were evaluated using scanning electron microscopy (SEM) and energy dispersive spectroscopy techniques to detect products formed by freeze–thaw action. RESULTS : It was found that the resistance of blended cement concrete containing AS and WS to freeze–thaw action was significantly better than that of OPC concrete. Furthermore, the SEM results revealed the frost damage of OPC concrete, owing to the formation of thaumasite. CONCLUSIONS : The application of AS in concrete can effectively improve the durability of concrete, particularly in freeze–thaw environments.
        4,000원
        10.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원
        11.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to evaluate the resistance to chemical attack of combined organic and inorganic hybrid mortars as the repair materials (i.e., HRM mortar) used for concrete road facilities through a comparison with mortars made from cement repair materials (i.e., IRM mortar). METHODS: Inorganic materials used as a binder and two mineral fillers were adopted to produce HRM mortars. The ratio of the main resin versus the hardener was fixed at 2:1. For comparison, IRM mortars made of cement repair materials were also manufactured. The mortars were exposed to chemical solutions, such as NaCl, MgSO4, Na2SO4, and H2SO4, with the same concentration of 5% after 7 days of curing. The compressive strength, compressive strength loss, mass ratio, and relative bulk density of the mortar samples exposed to the chemical solutions were measured at predetermined periods. In addition, a scanning electron microscope observation was performed to evaluate the microstructures and the products formed by the chemical reaction of the mortar samples. RESULTS : As a result, the resistance to chemical attack of the HRM mortars was found to be much better than that of the IRM mortars, regardless of the types of attacking sources. This finding implies that HRM is a highly promising and versatile material because of its excellent resistance to chemical attack. CONCLUSIONS: The application of the combined organic and inorganic hybrid mortars is a possible option for repair of concrete road facilities exposed to aggressive environments.
        4,000원
        12.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the durable performance of combined organic and inorganic hybrid mortar as repair material (HRM mortar) for concrete road facilities via comparison with that of cement repair materials (IRM mortar). METHODS : To produce HRM mortars, inorganic materials as binder and 2 mineral fillers were adopted. The ratio of main resin versus hardener was fixed at 1:2. For comparison, IRM mortars made with cement repair materials were also manufactured. Compressive, flexural, and bonding strengths were measured at predetermined periods. For durability assessment, the scaling resistance, freezing & thawing resistance, rapid chloride penetration resistance, and acid attack resistance of those mortars were experimentally monitored. RESULTS: The durability performances of HRM mortars, especially with respect to freezing & thawing, rapid chloride penetration and acid attack, were identified to be much better than those of IRM mortars. This result implies that HRM is a highly promising and versatile material because of its excellent durability. CONCLUSIONS: It is concluded that the application of the combined organic and inorganic hybrid mortars is possibly an option for the repair of concrete road facilities exposed to aggressive environments.
        4,000원
        15.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the performance of combined organic and inorganic hybrid mortar used as repair materials (UM mortar) for concrete road facilities by comparison with cement repair materials (RM mortar). METHODS: In order to produce UM mortar, four different levels of inorganic materials were adopted and the ratio of main resin to hardener was fixed at 1:2. For comparison, RM mortar made with cement repair materials was also produced. Fluidity, strength characteristics, length change, and freezing-thawing resistance of the mortars were measured at the predetermined periods. In addition, the microstructures of the mortars was performed on the 28-day mortar samples to examine the properties of the interfacial transition zone (ITZ). RESULTS : It was observed that the mechanical properties, except for compressive strength, and freezing-thawing resistance of UM mortars were much better than those of RM mortar. Furthermore, showing a densified ITZ properties on the UM mortars from the microstructural observation, the usage of UM mortars exhibited a beneficial effect on the enhancement of mortar properties. CONCLUSIONS: It is concluded that the application of combined organic and inorganic hybrid mortars is a possible option for the repair of deteriorated concrete road facilities.
        4,000원
        16.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS: In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS: It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.
        4,000원
        17.
        2017.11 구독 인증기관·개인회원 무료
        수상레저안전법에 따른 동력수상레저기구의 안전관리 실태 등을 확인하여 개선점 등을 고찰하고자 한다.
        18.
        2017.11 구독 인증기관·개인회원 무료
        해양수산부에서 추진중인 해양레저산업 경쟁력 강화를 위한 규제개선 과제 21가지 중 마리나선박의 선박검사기준 개선을 중심으로 해양레저선박 검사기준 개선사항과 시사점을 개략적으로 제시하여 보고자 한다.
        19.
        2017.10 구독 인증기관·개인회원 무료
        최근, 시멘트 사용량을 줄이고, 경제성을 확보하기 위하여 혼화재료를 적용한 콘크리트 포장에 대하여 많은 연구가 이루어지고 있다. 국내외적으로 콘크리트 포장용 결합재로써 활용되어지고 있는 혼화재료로써 고로슬래그, 플라이애시 등이 있으며, 이 중 고로슬래그는 냉각방법에 따라 급수로 냉각처리된 급냉슬래그와 공기 중에 냉각처리된 서냉슬래그로 분류될 수 있다. 서냉슬래그는 화학조성이 급냉슬래그와 유사하고 염기도가 높아 콘크리트용 혼화재료로 사용될 경우, 콘크리트 중 수산화칼슘과의 잠재수경성 발현에 유리하여 콘크리트 포장용 결합재로써 활용이 가능할 것으로 보고되고 있으며, 서냉슬래그의 물리화학적 특성을 기반으로 하여 서냉슬래그를 콘크리트 포장재료로써 활용하기 위한 몇몇의 연구가 진행되어 오고 있다. 본 연구에서는 서냉슬래그를 콘크리트 포장재료로 사용하여 공시체를 제조하였으며, 콘크리트의 공학적 특성을 실험적으로 평가함으로써, 서냉슬래그의 콘크리트 포장재료로써 적용가능성을 실험적으로 검토하였다.
        20.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in Vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in Vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in Vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in Vitro maturation of pig oocytes.
        4,000원
        1 2 3