In all mammalian species, progesterone is essential to both the preparation for, and maintenance of, pregnancy. The 20α-hydroxysteroid dehydrogenase (20α-HSD) enzyme predominantly converts progesterone into its biologically inactive form 20α-hydroxyprogesterone, thereby regulating its activity. Thus, to directly assess sexual maturation in the MediKinetics micropig®, we analyzed the concentration of the steroid hormones progesterone and estradiol during the estrous cycle.Our results show that the progesterone level exhibited by the analyzed micorpig® was low at the beginning of the estrous cycle, and then abruptly increased to 30.32±10.0 ng/mL and 46.37±11.0 ng/mL by days 9 and 11 of the cycle, respectively. It reached the highest level 55.87±3.5 ng/mL on day 13 of the estrous cycle, before decreasing to 46.58±13.1 ng/mL and 10.0±7.6 ng/mL by days 15 and 17 of the cycle, respectively. In contrast, the estradiol level was shown to be highest (27.13±11.2 ng/mL) at the initiation of the estrous cycle, after which point it decreased to 13.29±6.5 ng/mL and 10.94±5.9 ng/mL by days 4 and 5 of the estrous cycle, respectively. By day 17 of the estrous cycle, the estradiol level decreased to 4.13±7.6 ng/mL.We anticipate that these results will provide useful information to enable the study of human ovulation and reproductive physiology using the MediKinetics micoripig® as a model system. We recommend further investigation to elucidate the functional mechanisms underlying the regulation of sexual maturation in the MediKinetics micropig®.
The knock-in efficiency in the fibroblast is very important to produce transgenic domestic animal using nuclear transfer. In this research, we constructed three kinds of different knock-in vectors to study the efficiency of knock-in depending on structure of knock-in vector with different size of homologous arm on the β-casein gene locus in the somatic cells; DT-A_cEndo Knock-in vector, DT-A_tEndo Knock-in vector I, and DT-A_tEndo Knock-in vector II. The knock-in vector consists of 4.8 kb or 1.06 kb of 5’ arm region and 1.8 kb or 0.64 kb of 3’ arm region, and neomycin resistance gene(neor) as a positive selection marker gene. The cEndo Knock-in vector had 4.8 kb and 1.8 kb homologous arm. The tEndo Knock-in vector I had 1.06 kb and 0.64 kb homologous arm and tEndo Knock-in vector II had 1.06 kb and 1.8 kb homologous arm. To express endostatin gene as transgene, the F2A sequence was fused to the 5’ terminal of endostatin gene and inserted into exon 7 of the β-casein gene. The knock-in vector and TALEN were introduced into the bovine fibroblast by electroporation. The knock-in efficiencies of cEndo, tEndo I, and tEndo II vector were 4.6%, 2.2% and 4.8%, respectively. These results indicated that size of 3’ arm in the knock-in vector is important for TALEN-mediated homologous recombination in the fibroblast. In conclusion, our knock-in system may help to create transgenic dairy cattle expressing human endostatin protein via the endogenous expression system of the bovine β-casein gene in the mammary gland.
The oocyte undergoes various events during In vitro maturation (IVM) and subsequence development. One of the events is production of reactive oxygen species (ROS) that is a normal process of cell metabolism. But imbalances between ROS production and antioxidant systems induce oxidative stress that negatively affect to mammalian reproductive process. In vitro environments, In vitro matured oocytes have many problems, such as excessive production of ROS and imperfect cytoplasmic maturation. Therefore, In vitro matured oocytes still have lower maturation rates and developmental competence than in vivo matured oocytes. In order to improve the IVM and In vitro culture (IVC) system, antioxidants, vitamins were added to the IVM, IVC medium. Antioxidant supplementation was effective in controlling the production of ROS and it continues to be explored as a potential strategy to overcome mammalian reproductive disorders. Based on these studies, we expect that the use of antioxidants in porcine oocytes could improved maturation and development rates.