Embryonic stem (ES) cells are known to have an infinite proliferation and pluripotency that are associated with complex processes. The objective of this study was to examine expression of genes differentially regulated during differentiation of human ES cells by suppression subtractive hybridization (SSH). Human ES cells were induced to differentiate into neural precursor cells via embryoid body. Neural precursor cells were isolated physically based on morphological criteria. Immunocytochemical analysis showed expression of pax6 in neural precursor cells, confirming that the isolated cells were neural precursor cells. Undifferentiated human ES cells and neural precursor cells were subject to the SSH. TPX2 (Targeting Protein for Xklp2 (Xenopus centrosomal kinesin-like protein 2)) was identified, cloned and analyzed during differentiation of human ES cells into neural lineages. Expression of TPX2 was gradually down-regulated in embryoid bodies and neural precursor cells relative to undifferentiated ES cells. Targeting Protein for Xklp2 has been shown to be involved in cell division by interaction with microtubule development in cancer cells. Taken together, result of this study suggests that TPX2 may be involved in proliferation and differentiation of human ES cells.
This study was conducted to examine the mRNA expression of apoptosis-related and imprinted genes and methylation pattern of the differentially methylated region (DMR) of H19 gene in day 35 of SCNT pig fetuses. The day 35 of natural mating (control) or cloned (clone) pig fetuses were recovered from uterus. Endometrium from dam and liver from fetus were obtained, respectively. mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. The Bcl-2 mRNA expression in clone was significantly lower than that of control (p<0.05). The mRNA expression of H19 gene in both endometrium and liver was significantly higher in clone than that of control, respectively (p<0.05). The level of IGF-2 mRNA in liver of clone was significantly lower than that of control (p<0.05), whereas the mRNA expression of IGF2-R gene in liver of clone was significantly higher than that of control (p<0.05). The DMR of H19 was lower methylation pattern in clone than that of control. These results suggest that the aberrant mRNA expression of apoptosis-related and imprinted genes and the lower DMR methylation pattern of imprinted gene may be closely related to the inadequate fetal development of cloned fetus.
This study was conducted to examine the viability of Korean native striped cattle (Bos namadicus Falconer, Chikso) clone embryos after embryo transfer. Chikso somatic cell nuclear transfer (SCNT) embryos were produced by fusion of ear skin cells derived from a female Chikso with enucleated oocytes matured in vitro for 18-24 hr. After in vitro culture of SCNT embryos for 7 to 8 days, fresh or vitrified blastocysts derived from SCNT were transferred into a uterine horn of recipient cows. Fifteen of total 43 recipients were pregnant at Day 50 and 4 recipients were maintained to term. Three IVF-derived calves and 1 clone Chikso calf were born. Pregnancy rate was higher when fresh embryos were transferred to recipients compared to vitrified embryos, but development to term was not different between both groups. The clone Chikso calf died at 5 days after birth due to the fullness of amniotic fluid in rumen and the infection of umbilical cord. The result of the present study shows that clone Chikso calf can produced from the embryo transfer of SCNT embryos, however, solution of abortion problem is necessary to improve the cloning efficiency.
Epigenetic modification dependent DNA methyltransferases (DNMTs) play an important role in tissue- and stage-specific gene regulation and normal mammalian development. In this study, we show that DNMTs are expressed at different levels during hematopoietic stem cell (HSC) differentiation to proerythrocytes. DNMT1, DNMT3A, and DNMT3B were highly expressed at day 7 after differentiation. We used specific siRNA as a tool to probe the relationship between the expression of DNMTs and erythropoietic differentiation. When introduced siRNA of DMNT1 and DMNT3b in human CD34+ cells, these more differentiated into erythrocytes. This was confirmed by glycophorin A (GPA) positive cell analysis and globin gene expression. GPA+ cells increased up to 20~30%, and γ- and ε-globin genes increased in siRNA transfected cells. Therefore, our data suggest that suppression of DNA methylation can affect positively differentiation of HSC and may contribute to expression of erythrocyte lineage genes including GPA and globins.
The objective of this study was to determine the effect of administration of Prostaglandin F2α (PGF2α) on semen collection training and semen characteristics in sexually inexperienced boars. Boars were moved individually to a semen collection pen and were trained to mount dummy sow. During the first and second semen collection secessions, 4 out of 17 boars and 4 out of remaining 13 boars allowed collection of semen. The 9 boars that failed semen collection from first 2 attempts received immediately 15 mg of PGF2α i.m. (intramuscular injection) upon entering the collection pen for semen collection resulted in successful semen collection from all 9 boars. Total numbers of spermatozoa were higher in PGF2α treated boars but there was no significant difference in % motility kinematics characteristics between control and PGF2α treated groups during 72 hr period. Overall, administration of PGF2α in sexually inexperienced boars increased the sex drive and facilitated the mounting activity to the dummy sow for semen collection.
To examine the differential protein expression pattern in the 11.5 day post-coitus (dpc) and 18.5 dpc placenta of mouse, we have used the global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. The differential protein patterns of 3 placentae at the 11.5 dpc and 18.5 dpc from nature mating mice were analyzed. Proteins within isoelectric point range of 3.0~10.0, separately were analyzed in 2DE with 3 replications of each sample. A total of approximately 1,600 spots were detected in placental 2-D gel stained with Coomassie-blue. In the comparison of 11.5 dpc and 18.5 dpc placentae, a total of 108 spots were identified as differentially expressed proteins, of which 51 spots were up-regulated proteins such as alpha-fetoprotein, mKIAA0635 protein and transferrin, annexin A5, while 48 spots were down-regulated proteins such as Pre-B-cell colony-enhancing factor 1(PBEF), aldolase 1, A isoform, while 4 spots were 11.5 dpc specific proteins such as chaperonin and Acidic ribosomal phosphoprotein P0, while 3 spots were 18.5 dpc specific proteins such as aldo-keto reductase family 1, member B7 and CAST1/ERC2 splicing variant-1. Most identified proteins in this analysis appeared to be related with catabolism, cell growth, metabolism and regulation. Our results revealed composite profiles of key proteins involved in mouse placenta during pregnancy.
Insulin, transferrin and selenium (ITS) complex is reported to improve in vitro development of oocytes and embryos. This study was carried out to investigate the effects of ITS during in vitro culture (IVC) of porcine parthenogenetic and nuclear transfer (NT) embryos on subsequent developmental capacity in vitro. The electrically activated oocytes were cultured in Porcine Zygote Medium (PZM-3) with various concentrations (0, 0.1, 0.5, and 1.0%) of ITS for 7 days. Also, the electrically activated reconstructed embryos were cultured in PZM-3 with various concentrations (0, 0.1, 0.5, and 1.0%) of ITS for 6 days. Addition of ITS to culture medium did not affect development of porcine parthenogenetic embryos in vitro. To test the effect of ITS on the in vitro development of porcine NT embryos, factorial experiments were also performed for in vitro maturation (IVM) medium (TCM-199) with or without 1% ITS and culture medium (PZM-3) with or without 0.5% ITS. Addition of 0.5% ITS to culture medium increased (p<0.05) the proportion of NT blastocysts compared with non-treated group. In contrast, addition of 1% ITS to culture medium was ineffective or had a detrimental effect. Also, addition of ITS only to maturation medium increased (p<0.05) the percentage of NT blastocysts formation compared with the control group. In conclusion, addition of ITS to IVM or IVC medium could improve subsequent blastocyst development of porcine NT embryos.
Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III β-tubulin and MAP2ab were observed. Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.
This study was conducted to examine the protein kinase inhibitors, 6-dimethylaminopurine (DMAP) and cycloheximide (CHXM) on the development and chromosome constitution of porcine parthenogenetic embryos. In vitro matured oocytes were activated by electric stimuli (ES) or a combination of ES with culture in 2 mM DMAP or 10 μg/ml CHXM for 4 hr. Activated oocytes were cultured in PZM-3 for 6 days. Some 1-cell embryos and blastocysts were fixed by air dry method to analyze the chromosome constitutions and/or total cell number. Blastocyst development of DMAP-treated group (26.7%) was significantly higher (p<0.05) than those of CHXM-treated and ES control groups. Ploidy in 1-cell stage embryos was not different among groups (77.3 to 81.0%), however, proportion of diploid chromosome constitutions was high in DMAP-treated group (61.9%, p<0.05). In the blastocyst stage, proportion of diploid chromosome plates was significantly high in DMAP-treated group (64.2%, p<0.05), and proportion of abnormal chromosome plates was higher in CHXM-treated group (36.6%, p<0.05) than DMAP-treated group (28.3%,). Proportion of embryos with abnormal chromosome constitutions was slightly increased by DMAP (40.0%) and CHXM (42.1%) treatment due to the increasing of mixoploid (47.4 and 52.0%). The present study shows that the DMAP treatment increase the development of porcine parthenotes. However, parthenogenetic activation by ES or combined treatment with ES and DMAP or CHXM detrimentally affects the chromosome constitutions of porcine parthenotes during early embryonic development, leads to increased abnormal ploidy in the blastocyst stage.