The spontaneous mutant circling mouse (cir/cir) shows a circling behavior and hearing loss. We produced transgenic mice overexpressing transmembrane inner ear (tmie) gene, the causative gene, for the phenotypic rescue of the circling mouse. Through the continuous breeding with circling mice, the cir/cir homozygous mice carrying the transgene (cir/cir‐gtg) were produced. The rescued cir/cir‐gtg mice were able to swim in the water with proper orientation and did not show any circling behavior like wild type mice. Western blot and immunohistochemical analysis exhibited that the transgenic tmie was expressed in the inner ear. Inner and outer hair cells were recovered in the cochlea and spiral ganglion neurons were also recovered in the rescued mice. Auditory brainstem response (ABR) test demonstrated that the cir/cir‐gtg mice are able to respond to sound. This study demonstrates that tmie transgene can recover the hearing impairment and abnormal behavior in the circling mouse.
We investigated the microtubule dynamics, including the inheritance of donor centrosomes and the mitotic spindle assembly occurring during the first mitosis of somatic cell nuclear transfer (SCNT) embryos in pigs. SCNT embryos were fixed 15 min and 1 h after fusion in order to assess the inheritance pattern of the donor centrosome. The distribution and dynamic of the centrosome and microtubule during the first mitotic phase of SCNT embryos were also evaluated. The frequency of embryos evidencing γ‐gtubulin spots (centrosome) was 93.2% in the SCNT embryos 15 min after fusion. In the majority of the SCNT embryos (61.5%), however, no centrosome was observed 1 h after fusion. The frequency of the embryos with no or abnormal mitotic spindles 20 h after fusion was 19.6%. The γ‐gtubulin spots were detected near the nuclei of somatic cells regardless of cell cycle phase, whereas γ‐g tubulin spots in the SCNT embryos were observed only during the inter‐ganaphase transition. These results showed that the donor centrosome is inherited into the SCNT embryos, but failed to assemble the normal mitotic spindles during first mitotic phase in some SCNT embryos.
Our objective of current study was to investigate the development of bone and heart in association with diabetes mellitus (DM). DM was induced by administering an intraperitoneal injection of streptozotocin (STZ; 60 mg/kg) to 4‐gweek‐gold Sprague‐gDawley rats. Body weight and blood glucose were monitored, and rats were sacrificed after 2 or 5 weeks. The left ventricle (LV), including the interventricular septum, was weighed, and body weight and tibial bone length were assessed. Young diabetic rats showed reduced growth in terms of tibial length and body weight compared to controls. Moreover, diabetic males showed more significant growth suppression and reduced LV size than diabetic females. Morphometric analysis of tibiae from diabetic rats revealed suppressed bone growth at 2 and 5 weeks, with no difference between genders. STZ‐ginduced diabetes decreased bone growth and retarded pre‐gpubertal heart development. As a result, diabetes may increase cardiovascular risk factors and lead to eventual heart failure. Therefore, new therapeutic approaches are required for diabetic children exhibiting growth retardation. Heart growth factor, exercise, and cardiopulmonary physical therapy may be required to promote heart development and physiological function.
Melatonin is induced by light information through the retina and leads to growth factor activation. Thus, we investigated the effects of melatonin by controlling the photoperiod of growing young rats. Male Sprague‐gDawley rats (n=6; 4 weeks old) were divided into two experimental groups: the L/D group (normal photoperiod; light/dark: 12/12 h; lights on at 9:00 a.m.) and the L/L group (light/light: 24 h). Rat body weight and food consumption were measured daily for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of ketamine (50 mg/kg) and xylazine (10 mg/kg) and sacrificed. Tissue was then collected for RNA isolation (from brain, heart, liver, kidney, adrenal gland, testis, tibia, hind limb muscles). Also, serum was isolated from blood using a centrifugal separation. The L/L group had significantly lower body weight than the L/D group from 4 to 6 weeks (p<0.05). The L/D group had increased tissue mass, compared with the L/L group, but the difference was not statistically significant. The L/D group had a significantly higher melatonin concentration than the L/L group between the hours of midnight and 2:00 a.m (p<0.01). These results indicate that photoperiod length may affect the secretion of melatonin from the pineal gland. Also, the reduction of nocturnal melatonin secretion may retard the development of growing young rats. In future studies, we plan to compare exogenous melatonin administration with endogenous melatonin concentration induced by photoperiod control. Moreover, we will confirm whether the effects seen in pathological animal models can be reversed by controlling the photoperiod.
Decorin (DCN) is a member of small leucine‐grich proteoglycans which are ubiquitous components of the extracellular matrix. It regulates many physiological processes, such as matrix formation, collagen fibrillogenesis, angiogenesis, cancer growth, and cardiovascular diseases. It has been shown that DCN is expressed in the uterus during pregnancy and modulates implantation and decidualization for the establishment and maintenance of pregnancy in mice and humans. Expression of DCN in the uterine endometrium during pregnancy has not been investigated in pigs. Thus, this study investigated expression of DCN in the uterine endometrium during the estrous cycle and pregnancy in pigs. Uterine endometrial tissues were from day (D) 12 and 15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy. Northern blot and real‐gtime RT‐gPCR analyses showed that expression of DCN mRNA was detected throughout the estrous cycle and pregnancy with the highest levels during mid pregnancy. In situ hybridization analysis showed that DCN mRNA was localized to both luminal and glandular epithelia during the estrous cycle and pregnancy and also to chorionic membrane during mid pregnancy in pigs. To determine whether endometrial expression of DCN was affected by the somatic cell nuclear transfer (SCNT) procedure, DCN mRNA levels in the uterine endometrium from gilts with SCNT embryos on D30 of pregnancy were compared with those from gilts with normal embryos using real‐gtime RT‐gPCR analysis. The result showed that DCN mRNA levels in the uterine endometrium were not significantly different between gilts with normal embryos and SCNT embryos. These results suggest that DCN may play an important role for endometrial tissue remodeling during mid pregnancy, and DCN expression is not affected by the SCNT procedure at the early stage of pregnancy in pigs.
Functional regulation of a specific tissue or organ is controlled by a number of ways, including local cell‐gcell interaction. Of several forms of cell‐gcell junctional complexes, gap junctions are caught a great attention due to a formation of direct linkage between neighboring cells. Gap junctions are consisted of connexin (Cx) isoforms. In the present study, we evaluated expressional profiling of Cx isoforms in the rat initial segment (IS) of the male reproductive tract at different postnatal ages. The presence and expression of 13 Cx isoform mRNAs were determined by semi‐gquantitative real‐gtime PCR analyses. A total of 8 Cx isoform mRNAs were detected in the IS of the male rats during postnatal development. The highest level of Cx30.3 mRNA was found at 5 months of age, while abundance of Cx31 mRNA was the highest at 1 year of age. Expression of Cx31.1 gene was relatively consistent during the postnatal development. Fluctuation of Cx32 and 37 gene expression was observed during the postnatal period. Significant elevation of Cx40 mRNA abundance was detected at 25 days of age and older ages. Expression patterns of Cx43 and 45 genes were similar with the highest level at 2 weeks of age, followed by gradual decreases at older ages. These results indicate differential regulation on expression of Cx isoforms in the rat IS during postnatal development. A complicated regulation of gene expression of Cx isoforms in the IS at different postnatal ages is suggested.
Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. In this study, we analyzed by immunohistochemical methods adaptive mechanisms to excessive erythrocytosis in transgenic (tg) mice expressing dimeric human erythropoietin (dHuEPO) gene. Splenomegaly was observed over 11 21 times in the tg mice. The 2,672 candidate spleen‐gderived genes were identified through the microarray analysis method, and decreased genes were higher than increased genes in the spleen. The specific proteins in the increased and decreased genes were analyzed by immunohistochemical methods. Our results demonstrate that problems of abnormal splenomegaly would solve in tg mice overexpressing dHuEPO gene.