Cryopreservation has been applied successfully in many mammalian species. Nevertheless, pig embryos, because of their greater susceptibility to cryoinjuries, have shown a reduced developmental competence. The aim of this study was to evaluate the survival status of vitrified-warmed porcine embryos. Forced blastocoele collapse (FBC) and non-FBC blastocysts are vitrified and concomitantly cultured in culture media which were supplemented with/without fetal bovine serum (FBS). Porcine vitrified-warmed embryos were examined in four different methods: group A, non- FBC without FBS; group B, non-FBC with FBS; group C, FBC without FBS; group D, FBC with FBS. After culture, differences in survival rates of blastocysts derived from vitrified-warmed porcine embryos were found in group A∼D (39.5 (A) vs 52.5 (B) and 54.8 (C) vs 66.7% (D), respectively, p<0.05). Reactive oxygen species (ROS) level of survived blastocysts was lower in group D than that of another groups (p<0.05). Moreover, total cell number of survived blastocysts was higher in group D than that of other groups (p<0.05). Otherwise, group D showed significantly lower number of apoptotic cells than other groups (2.0±1.5 vs 3.2±2.1, 2.8±1.9, and 2.7±1.6, respectively, p<0.05). Taken together, these results showed that FBS/FBC improves the developmental competence of vitrified porcine embryos by modulating intracellular levels of ROS and the apoptotic index during the vitrification/warming procedure. Therefore, we suggest that FBS and FBC are effective treatment techniques during the vitrification/warming procedures of porcine blastocysts.