검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 848

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Porcine embryonic development is widely utilized in the medical industry. However, the blastocyst development rate in vitro is lower compared to in vivo . To address this issue, various supplements are employed. Extracellular vesicles (EVs) play the role of communicators that carry many bioactive cargoes. Additionally, the contents of EVs can vary on the estrous cycle. Methods: We compared the effects of adding EVs derived from porcine uterine fluid (UF), categorized as non-EV (G1), EVs in estrus (G2) and EVs in diestrus (G3). After in vitro culture (IVC) was performed in three different groups, cleavage rate and blastocyst development rate were examined. In addition, glutathione (GSH) and reactive oxygen species (ROS) levels were measured 2 days after activation to assess oxidative stress. Results: Using NTA and cryo-TEM, we confirmed the presence of EVs with sizes ranging from 30 nm to 200 nm, that the particles were suitable for analysis for analysis. In IVC data, the highest cleavage rate was observed in G2, which was significantly different from G1 but not significantly different from the next highest, G3. Similarly, the highest blastocyst development rate was observed in G2, which was significantly different from G1 but not significantly different from the next highest, G3. Conclusions: These results indicate that estrus derived EVs contain biofactors beneficial for early blastocyst development, including GSH which protects the blastocyst from oxidative stress. Additionally, although diestrus-derived EVs are expected to have some effect on blastocyst development, it appeared to be less effective than estrus-derived EVs.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pathogenic Escherichia coli strains are known to cause edema disease (ED) and postweaning diarrhea (PWD) in piglets. Although the exact mechanisms of pathogenicity that lead to ED-PWD remain to be elucidated, we investigated whether another E. coli adhesin, the plasmid-encoded adhesin involved in diffuse adherence (AIDA) might also be present in ED-PWD-causing E. coli isolates. It was showed that E. coli strains attach to HEp-2 cell assay in three different patterns. Twenty-two isolates were from faeces of preweaned pigs and 36 isolates were from faeces of postweaned pigs. The base sequences for specific oligonucleotide primers of PCR used in this study were constructed based on the regions of conserved sequences between forward (5′-3′) ACAGTATCATATGGAGCCA and reverse (5′-3′) TGTGCGCCAGAACTATTA. Product size was 585 base pairs. A total of 58 AIDA-positive E. coli were used for cell adherence pattern analysis of HEp-2 cell assay. Forty three isolates showed three distinct patterns that were localized adherence (LA), diffuse adherence (DA) and aggregative adherence (AA) patterns respectively. But fifteen isolates were nonadherent. LA (14 isolates) pattern was the most common, followed by DA (13 isolates) and AA (9 isolates) pattern. And three isolates showed a combination of the LA and AA patterns and 4 isolates showed a combination of the DA and AA patterns. Escherichia coli strains that cause nonbloody diarrhea in infants are known to present three distinct patterns of adherence to epithelial cells, namely, localized (LA), diffuse (DA), and aggregative (AA) adherence.
        3,000원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 μM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 μM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.
        4,000원
        4.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The small intestine plays a crucial role in animals in maintaining homeostasis as well as a series of physiological events such as nutrient uptake and immune function to improve productivity. Research on intestinal organoids has recently garnered interest, aiming to study various functions of the intestinal epithelium as a potential alternative to an in vivo system. These technologies have created new possibilities and opportunities for substituting animals for testing with an in vitro model. Methods: Here, we report the establishment and characterisation of intestinal organoids derived from jejunum tissues of adult pigs. Intestinal crypts, including intestinal stem cells from the jejunum tissue of adult pigs (10 months old), were sequentially isolated and cultivated over several passages without losing their proliferation and differentiation using the scaffold-based and three-dimensional method, which indicated the recapitulating capacity. Results: Porcine jejunum-derived intestinal organoids showed the specific expression of several genes related to intestinal stem cells and the epithelium. Furthermore, they showed high permeability when exposed to FITC-dextran 4 kDa, representing a barrier function similar to that of in vivo tissues. Collectively, these results demonstrate the efficient cultivation and characteristics of porcine jejunum-derived intestinal organoids. Conclusions: In this study, using a 3D culture system, we successfully established porcine jejunum-derived intestinal organoids. They show potential for various applications, such as for nutrient absorption as an in vitro model of the intestinal epithelium fused with organ-on-a-chip technology to improve productivity in animal biotechnology in future studies.
        4,000원
        5.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In response to the expanding landscape of the biotechnology industry and the increasing demand for comprehensive drug development as well as the conduct of preclinical and clinical trials, there is a growing need for employment of diverse animal models, including both small and large animals. The focus of this study was on refining ex vivo culture techniques for bioluminescence imaging following administration of intradermal injections in large animals. To examine the feasibility of our approach, varying concentrations of the rFluc protein were administered to rats and live imaging was employed to validate the corresponding levels of expression. Subsequently, following administration of rFluc to mini-pigs, ex vivo analyses were performed on sample tissues to assess the levels of protein expression across different concentrations. In particular, optimal culturing conditions that facilitated the sustained expression of the protein in samples post-euthanasia were identified. Moreover, by employing small animal imaging devices, we were able to capture clear images of the sample plates, which provided evidence of the successful application of our experimental techniques. The findings from this research represent a significant effort toward refining bioluminescence imaging methods tailored for use with large animal models—an imperative facet of contemporary drug development and biomedical research.
        4,000원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Porcine pluripotent stem cells (pPSCs) would provide enormous potential for agriculture and biomedicine. However, authentic pPSCs have not established yet because standards for pPSCs-specific markers and culture conditions are not clear. Therefore, the present study reports comparative pluripotency characteristics in porcine induced pluripotent stem cells (piPSCs) derived from different viral transduction and reprogramming factors [Lenti-iPSCs (OSKM), Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM)]. Methods: Porcine fibroblasts were induced into Lenti-iPSCs (OSKM) and Lenti-iPSCs (OSKMNL) by using Lentiviral vector and Sev-iPSCs (OSKM) by using Sendaiviral vector. Expressions of endogenous or exogenous pluripotency-associated genes, surface marker and in vitro differentiation in between Lenti-piPSCs (OSKM), Lenti-iPSCs (OSKMNL) and Sev-piPSCs (OSKM) were compared. Results: Colonial morphology of Lenti-iPSCs (OSKMNL) closely resembles the naïve mouse embryonic stem cells colony for culture, whereas Sev-iPSCs (OSKM) colony is similar to the primed hESCs. Also, the activity of AP shows a distinct different in piPSCs (AP-positive (+) Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM), but AP-negative (-) LentiiPSCs (OSKM)). mRNAs expression of several marker genes (OCT-3/4, NANOG and SOX2) for pluripotency was increased in Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM), but Sev-iPSCs (OSKM). Interestingly, SSEA-1 of surface markers was expressed only in Sev-iPSCs (OSKM), whereas SSEA-4, Tra-1-60 and Tra-1-81 were positively expressed in Lenti-iPSCs (OSKMNL). Exogenous reprogramming factors continuously expressed in Lenti-iPSCs (OSKMNL) for passage 20, whereas Sev-iPSCs (OSKM) did not express any exogenous transcription factors. Finally, only Lenti-iPSCs (OSKMNL) express the three germ layers and primordial germ cells markers in aggregated EBs. Conclusions: These results indicate that the viral transduction system of reprograming factors into porcine differentiated cells display different pluripotency characteristics in piPSCs.
        4,900원
        7.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer the immense therapeutic potential in stem cell-based therapy of degenerative disorders. However, clinical trials of human ESCs cause heavy ethical concerns. With the derivation of iPSCs established by reprogramming from adult somatic cells through the transgenic expression of transcription factors, this problems would be able to overcome. In the present study, we tried to differentiate porcine iPSCs (piPSCs) into endothelial cells (ECs) for stem cell-based therapy of vascular diseases. Methods: piPSCs (OSKMNL) were induced to differentiation into ECs in four differentiation media (APEL-2, APEL-2 + 50 ng/mL of VEGF, EBM-2, EBM-2 + 50 ng/ mL of VEGF) on cultured plates coated with matrigel® (1:40 dilution with DMEM/F-12 medium) for 8 days. Differentiation efficiency of these cells were exanimated using qRT-PCR, Immunocytochemistry, Western blotting and FACS. Results: As results, expressions of pluripotency-associated markers (OCT-3/4, SOX2 and NANOG) were higher observed in all porcine differentiated cells derived from piPSCs (OSKMNL) cultured in four differentiation media than piPSCs as the control, whereas endothelial-associated marker (CD-31) in the differentiated cells was not expressed. Conclusions: It can be seen that piPSCs (OSKMNL) were not suitable to differentiate into ECs in the four differentiation media unlike porcine epiblast stem cells (pEpiSCs). Therefore, it would be required to establish a suitable PSCs for differentiating into ECs for the treatment of cardiovascular diseases.
        4,300원
        9.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Enteropathogenic Escherichia coli (EPEC) is one of the etiological agents that causes diarrhea in weaning pigs. In this study, we report that mutating both relA and spoT genes in EPEC E2348/69 can promote bacterial clearance in porcine gastrointestinal tract (GIT). Our experimental analyses showed that an E2348/69 ΔrelAΔspoT mutant strain was not detected in porcine feces after 1 day post-infection (dpi), whereas its parental strain was continuously detected in porcine feces within 10 dpi. Histologic assessment revealed that the mutant strain was unable to induce moderate pathologic lesions in porcine GIT when compared to those with the wildtype strain. Taken together, our data suggest that the relA and spoT genes in EPEC play an important role in bacterial survival and pathogenesis in porcine GIT.
        4,000원
        10.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an N6-methyladenosine (m6A) RNA modification regulator and a key determinant of premRNA processing, mRNA metabolism and transportation in cells. Currently, m6A reader proteins such as hnRNPA2/B1 and YTHDF2 has functional roles in mice embryo. However, the role of hnRNPA2/B1 in porcine embryogenic development are unclear. Here, we investigated the developmental competence and mRNA expression levels in porcine parthenogenetic embryos after hnRNPA2/B1 knock-down. HhnRNPA2/B1 was localized in the nucleus during subsequent embryonic development since zygote stage. After hnRNPA2/B1 knock-down using double stranded RNA injection, blastocyst formation rate decreased than that in the control group. Moreover, hnRNPA2/B1 knock-down embryos show developmental delay after compaction. In blastocyste stage, total cell number was decreased. Interestingly, gene expression patterns revealed that transcription of Pou5f1, Sox2, TRFP2C, Cdx2 and PARD6B decreased without changing the junction protein, ZO1, OCLN, and CDH1. Thus, hnRNPA2/B1 is necessary for porcine early embryo development by regulating gene expression through epigenetic RNA modification.
        4,000원
        11.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ovary undergoes substantial physiological changes along with estrus phase to mediate negative/positive feedback to the upstream reproductive tissues and to play a role in producing a fertilizable oocyte in the developing follicles. However, the disorder of estrus cycle in female can lead to diseases, such as cystic ovary which is directly associated with decline of overall reproductive performance. In gene expression studies of ovaries, quantitative reverse transcription polymerase chain reaction (qPCR) assay has been widely applied. During this assay, although normalization of target genes against reference genes (RGs) has been indispensably conducted, the expression of RGs is also variable in each experimental condition which can result in false conclusion. Because the understanding for stable RG in porcine ovaries was still limited, we attempted to assess the stability of RGs from the pool of ten commonly used RGs (18S, B2M, PPIA, RPL4, SDHA, ACTB, GAPDH, HPRT1, YWHAZ, and TBP) in the porcine ovaries under different estrus phase (follicular and luteal phase) and cystic condition, using stable RG-finding programs (geNorm, Normfinder, and BestKeeper). The significant (p < 0.01) differences in Ct values of RGs in the porcine ovaries under different conditions were identified. In assessing the stability of RGs, three programs comprehensively agreed that TBP and YWHAZ were suitable RGs to study porcine ovaries under different conditions but ACTB and GAPDH were inappropriate RGs in this experimental condition. We hope that these results contribute to plan the experiment design in the field of reproductive physiology in pigs as reference data.
        4,000원
        12.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Somatic cell nuclear transfer (SCNT) in pigs has been used as a very important tool to produce transgenic for the pharmaceutical protein, xenotransplantation, and disease model and basic research of cloned animals. However, the production efficiency of SCNT embryos is very low in pigs and miniature pigs. The type of donor cell is an important factor influencing the production efficiency of these cloned pigs. Here, we investigated the developmental efficiency of SCNT embryos to blastocysts and full term development using fetal fibroblasts (FF) and mesenchymal stem cells (MSCs) to identify a suitable cell type as donor cell. We isolated each MSCs and FF from the femoral region and fetus. Cultured donor cell was injected into matured embryos for cloning. After that, we transferred cloned embryos into surrogate mothers. In term of in vitro development, the SCNT embryos that used MSCs had significantly higher in cleavage rates than those of FF (81.5% vs. 72%) (p<0.05), but the blastocyst formation rates and apoptotic cell ratio was similar (15.1%, 6.18% vs. 20.8%, 9.32%). After embryo transferred to surrogates, nine and nineteen clone piglets were obtained from the MSCs and FF group, respectively, without significant differences in pregnancy and birth rate (50%, 40% vs. 52.3%, 45.4%) (p>0.05). Moreover, there was no significant difference in the corpus hemorrhagicum numbers of ovary, according to pregnancy, abortion, and delivery of surrogate mothers between MSCs and FF groups. Therefore, the MSCs and FF are useful donor cells for production of clone piglets through SCNT, and can be used as important basic data for improving the efficiency of production of transgenic clone pigs in the future.
        4,000원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Organ transplantation is currently the most fundamental treatment for organ failure, but there is a shortage of organ supply compared to those in need. Regenerative medicine has recently developed a decellularization technique that overcomes the limitations of conventional organ transplantation and attempts to reconstruct damaged tissues or organs to their normal state. Several decellularization methods have been suggested. In this experiment, the decellularization methods were used to find effective decellularization methods for humanlike porcine placenta. The optimal conditions for decellular support are low DNA content and high glycos amino glycans (GAGs) and collagen content. In order to satisfy this condition, SDS and Triton X-100 and SDS + Triton X-100 were used as the detergent used for decellularization in this experiment. The contents were compared according to the decellularization time (0, 12, 24, 48 and 72 hours), and the concentrations of SDS (0.2, 0.5, 0.7 and 1.0%) were mixed in 1.0% Triton X-100 to analyze the contents. When decellularized using SDS and Triton X-100, respectively, it was confirmed that the contents of DNA and GAGs were opposite to each other. And decellularization treatment for 24 hours at 0.5% SDS was able to obtain an effective decellular support. If decellularization studies of various detergents can be obtained an effective decellular support, and furthermore, cell culture experiments can confirm the effect on the cells.
        4,000원
        14.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.
        4,000원
        15.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A solid-phase competition enzyme-linked immunosorbent assay (ELISA), recombinant VP2 (rVP2) protein, and monoclonal antibody (mAb) were developed for the specific and sensitive detection of porcine parvovirus (PPV) antibodies in pig sera. A total of 1,544 sera samples were collected from breeding pig farms located in the Gyeongsangbuk-do Province in the Republic of Korea. The optimal operating conditions of SC-ELISA were as follows. The concentration of rVP2 proteins coated on the wells was 4 μg/mL, the swine sera were diluted 1:2, and the HRP-conjugated PPV VP2 mAb (9A8 clone) was used at 500 ng/mL. These results suggest that the SC-rVP-ELISA assay may be a valuable alternative to the current diagnostic tools used to detect PPV-specific monoclonal antibodies and broadly monitor PPV infections in domestic pigs at different breeding stages.
        4,000원
        16.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of present study was to investigate regulatory mechanism of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation of porcine oocytes. Basically, immature cumulus-oocyte complexes (COCs) were incubated for 22 h in IVM-I to which hormone was added, and then further incubated for 22 h in IVM-II without hormone. As a result, relative cumulus expansion was increased at 22 h after IVM and it was enhanced by treatment of ALA compared with control group (p < 0.05). During IVM process within 22 h, cAMP level in oocytes was decreased at 6 h (p < 0.05) and it was recovered at 12 h in ALA-treated group, while oocytes in control group recovered cAMP level at 22 h. In cumulus cells, it was reduced in all time point (p < 0.05) and ALA did not affect. Treatment of ALA enhanced metaphase-I (MI) and MII population of oocytes compared with oocytes in control group at 22 and 44 h, respectively (p < 0.05). Intracellular GSH levels in ALA group was increased at 22 and 44 h after IVM (p < 0.05), whereas it was increased in control group at 44 h after IVM (p < 0.05). In particular, the GSH in ALA-treated oocytes during 22 h of IVM was higher than control group at 22 h (p < 0.05). Lipid amount in oocytes from ALA group was higher than control group (p < 0.05). Treatment of ALA did not influence to absorption of glucose from medium. Cleavage and blastocyst formation of ALA-treated oocytes were enhanced compared with control group (p < 0.05). These findings suggest that supplementation of ALA could improve oocyte maturation and development competence through increasing GSH synthesis, lipid storage, and regulation of cAMP accumulation during early 22 h of IVM, and these might be mediated by cumulus expansion.
        4,000원
        17.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Direct injection of genome editing tools such as CRISPR/Cas9 system into developing embryos has been widely used to generate genetically engineered pigs. The approach allows us to produce pigs carrying targeted modifications at high efficiency without having to apply somatic cell nuclear transfer. However, the targeted modifications during embryogenesis often result in mosaicism, which causes issues in phenotyping founder animals and establishing a group of pigs carrying intended modifications. This study was aimed to establish a genomic PCR and sequencing system of a single blastomere in the four-cell embryos to detect potential mosaicism. We performed genomic PCR in four individual blastomeres from four-cell embryos. We successfully amplified target genomic region from single blastomeres of 4-cell stage embryo by PCR. Sanger sequencing of the PCR amplicons obtained from the blastomeres suggested that PCR-based genotyping of single blastomere was a feasible method to determine mutation type generated by genome editing technology such as CRISPR/Cas9 in early stage embryos. In conclusion, we successfully genotyped single blastomeres in a single 4-cell stage embryo to detect potential mosaicism in porcine embryos. Our approach offers a simple platform that can be used to screen the prevalence of mosaicism from designed CRISPR/Cas9 systems.
        4,000원
        18.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aims of the present study were to confirm that regulation of the PA and environment via TGF-β regulation of sperm by Percoll-separated in porcine uterine epithelial cells. And, it was performed to identify the cytokines (TGF-β1, 2 and 3, TGF-β receptor1 and 2; interleukin, IL-6, IL-8) and PA-related genes (urokinase-PA, uPA; tissue- PA, tPA; PA inhibitor, PAI; uPA-receptor, uPAR) by spermatozoa. The experiment used porcine uterus epithelial cells (pUECs) and uterine tissue epithelial cells, Boar sperm were separated by discontinuous Percoll density gradient (45/90%), and tissues were co-incubated with spermatozoa, followed by real-time PCR. PA activity was measured of sperm by discontinuous Percoll density gradient (45/90%) for 24 hours. To measure viability and acrosome damage of sperm double stained propidium iodide (PI) and SYBR- 14 or FITC-PNA were used. In results, binding ratio of Percoll-separated sperm was found no differences, but sperms isolated from 90% Percoll layer reduced PA activity (p < 0.05). when co-cultured sperm selected Percoll in porcine uterus tissues epithelial cells, 90% layer sperm increased TGF-β R1, contrastively tPA and PAI-1 in comparison with control (p < 0.05). 45% sperm was decreased the expression of uPA (p < 0.05). TGF-β decreased PA activity in the supernatant collected from pUECs (p < 0.05). Especially, The group including uPA, PAI-1 were induce sperm intact, while it was reduced in sperm damage when compared to control (p < 0.05). Also, there was no significant difference group of tPA and tPA+I in the dead sperm and acrosome damage compared to control. The expression of tPA and PAI showed a common response. Percoll-separated spermatozoa in 90% layer reduced tPA and IL-related gene mRNA expression. Thus, Percoll-sparated sperm in 90% layer show that it can suppress inflammation through increased expression of TGF-β and downregulation of PA and IL in epithelial cells compared to 45% layer Percoll.
        4,000원
        19.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the residue of tulathromycin (TLM) on the lung tissue of pigs intramuscularly injected with 2.5 mg/kg body weight as a single dose. Nine healthy cross swine were intramuscularly injected with the drug. Three treated animals were arbitrarily selected to be sacrificed at 7, 10 and 14 days after treatment. TLM residue concentrations in lung tissue were determined using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The drug was extracted from lung samples using acetonitrile followed by clean-up with n-hexane. The analyte was separated on a Hypersil GOLDTM liquid chromatography column using 0.1% formic acid in deionized distilled water and acetonitrile. The correlation coefficient (R2) of the calibration curve was 0.9981, and the limits of detection and quantification were 10 and 50 μg/kg, respectively. Recoveries at three spiking levels ranged between 95.0-98.2%, and relative standard deviations were less than 3.95%. In TLM-treated group, the concentration of TLM on 7, 10 and 14 days post-treatment was 627.3, 496.9, 259.1 μg/kg, respectively. The developed method is sensitive and reliable for detection of TLM in porcine lung tissues. In addition, it can detect below the maximum residue limits in animal-derived food products destined for human consumption.
        4,000원
        20.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesenchymal stem cells (MSCs) have been widely used as donor cells for somatic cell nuclear transfer (SCNT) to increase the efficiency of embryo cloning. Since replicative senescence reduces the efficiency of embryo cloning in MSCs during in vitro expansion, transfection of telomerase reverse transcriptase (TERT) into MSCs has been used to suppress the replicative senescence. Here, TERT-transfected MSCs in comparison with early passage MSCs (eMSCs) and sham-transfected MSCs (sMSCs) were used to evaluate the effects of embryo cloning with SCNT in a porcine model. Cloned embryos from tMSC, eMSC, and sMSC groups were indistinguishable in their fusion rate, cleavage rate, total cell number, and gene expression levels of OCT4, SOX2 and NANOG during the blastocyst stage. The blastocyst formation rates of tMSC and sMSC groups were comparable but significantly lower than that of the eMSC group (p < 0.05). In contrast, tMSC and eMSC groups demonstrated significantly reduced apoptotic incidence (p < 0.05), and decreased BAX but increased BCL2 expression in the blastocyst stage compared to the sMSC group (p < 0.05). Therefore, MSCs transfected with telomerase reverse transcriptase do not affect the overall development of the cloned embryos in porcine SCNT, but enables to maintain embryo quality, similar to apoptotic events in SCNT embryos typically achieved by an early passage MSC. This finding offers a bioengineering strategy in improving the porcine cloned embryo quality.
        4,000원
        1 2 3 4 5