검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2008.10 구독 인증기관·개인회원 무료
        We amplified D1 and D3 expansion segments of the 28S ribosomal RNA from 10 Suanguina moxae populations found in Korea. The amplification of the D1-D3 expansion segments of 28S gene of all populations tested produced a single PCR product approximately 1.03kb in size, suggesting the lack of D1-D3 expansion region size polymorphism among populations. The secondary structure model of 28S expansion segments D2 and D3 for Subanguina Moxae was predicted based on free energy minimization with comparative sequence analysis and new sequence alignment was conducted based on predicted secondary structure model. The predicted model was compared with previous predicted models of plant and animal parasite nematode. This predicted secondary structure model will provide valuable information to allocate positional sequence homology and reconstruction of reliable phylogenetic trees.
        2.
        2008.05 구독 인증기관·개인회원 무료
        The subfamily Hoplolaiminae included economically important plant parasitic nematodes and consisted of more than 400 species, all having the diagnostic characters of a strongly annulated cuticle and a large stylet. Among the Hoplolaiminae genera, the genus Hoplolaimus species include species such as H. columbus, and H. galeatus that cause serious damage to crops and turf grass in the Southeastern United States. Traditional identification of species has been approached by interspecific variation of phenotypic traits that rely on morphological and morphometric characters. However, these taxonomic criteria are sometimes not practical because of their limited ability to discriminate species among closely related groups due to overlapping of important taxonomic characters. The exact species identification is needed to control target nematode and also quarantine. Therefore, genetic studies for development of molecular diagnostics, population biology, and disease management are required. In recent years, many molecular diagnostic methods have been used for the identification of plant parasitic nematodes. Advanced molecular techniques have been used that test traditional identification methods. In our studies, Hoplolaimus species showed that high genetic divergence in rDNA sequence is combined with low morphological diversity. Based on genetic information, we developed multiplex PCR for H. columbus, H. galeatus, and H. magnistylus and successfully amplified mixed populations. In molecular phylogeny, the subfamily Hoplolaiminae is an important out‐group of the Heteroderidae, a notorious plant parasite nematode group. Molecular phylogeny of the Hoplolaiminae will help us understand of pathways of pathogenesis. In our phylogenetic analysis using D2 and D3 expansion segments of 28S gene, the molecular data supported morphological based taxonomic schemes. To reconstruct more reliable phylogenetic analysis, correct assignment of each nucleotide within multiple sequence alignment is an important step. Sequence alignments based on secondary structure have been proposed as new alternative methods to obtain this goal. We predicted the secondary structure of D2 and D3 domain using computational predictions method such as the minimization energy method and comparative sequence analysis (co‐variation). Predicted secondary structure included 18 species with two outgroup species, Globodera rostochiensis, Rotylenchulus reniformis. Consensus secondary structure was obtained from closely related and distantly related species. Phylogenetically informative characters were distributed in the stem region (86.7%). These results support the effectiveness of stem and loop regions for phylogenetic analysis of the Hoplolaiminae.