검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.07 서비스 종료(열람 제한)
        Ionizing radiation directly and indirectly affects gene expression within the plant genome. To access the physiological response of rice to different types of ionizing radiation, rice seeds were exposed to gamma-ray and ion beam radiation. Exposure to ionizing radiation dramatically decreased the shoot length compared with non-irradiated plants. Fluorescence-activated-cell-sorting (FACs) was used to measure DNA contents. There were significant correlations of dose-dependent between irradiated plant and non-irradiated plant. The radicals induced by the ionizing radiation in the plant could be observed by electron spin resonance (ESR). It was confirmed that the number of free radicals in cell was greatly increased all irradiated plants than non-irradiated plant. A significant positive correlation was shown between ionizing radiation dose and signal intensity. In order to determine the Genetic diversity, AFLP analysis was conducted with the irradiated plant and non-irradiated plant. Based on band patterns, the cluster analysis was conducted to evaluate the genetic variation by using the UPGMA (Unweighted Pair Grouping Method of Averages). Genetic diversity of irradiated plants by low dose ion beam was the closest non-irradiated plant and irradiated by high dose gamma-ray was the furthest from non-irradiated. We describe the detailed methods of ionizing irradiation and discuss its applications in genetic research as well as plant breeding.
        2.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        Recently, giant embryonic rice and functional rice food are preferred by more consumers, which are attributed to the fact that the embryo has high concentrations of essential amino acids, fatty acids, and vitamins relative to other parts of rice grains. In this report, the heredity and stability of giant embryo mutations in successive generations were analyzed regarding a giant embryonic line, 'P47', induced by T-DNA insertion and a F2 population from a cross between 'P47' and 'Junam'. The mutant lines with increases of 1.5, 1.7 and 1.8 times on embryo length, width and 100-embryo weight to those of the control showed stable inheritance across three generations. The continuous frequency distributions of embryo size in the F2 population showed that the embryo size is a quantitative trait of polygene controlled. In addition, wide range of transgressive segregations of six traits affecting embryo size confirmed exchange of genetic materials and recombination between genes controlling embryo size. Five giant embryo mutant lines selected from the F2 population will be used for artificial selection and improvement of giant embryonic varieties.