기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 1일 지속강우, 2일 지속강우, 3일 지속강우, 4일이상 지속강우로 구분하여 강우의 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵 밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하였고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하 고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.
본 연구에서는 유역의 공간상관성을 고려한 다지점 일단위 강수량을 동시에 모의할 수 있는 일강수량 모의기법을 개발하였다. 기존 Hidden Markov Chain Model(HMM)은 단일지점 강수모의에 적용되어 왔으나 관측지점간의 유역상관성을 충분히 고려하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 Chow-Liu Tree(CLT) 모형을 적용하여 다변량(multivariate) 형태로써 유역내에 위치한 강우관측소간의 상호종속성을 고려하기 위하여 기존의 동질성 HMM 강우모의기법과 CLT 알고리즘을 결합한 동질성 CLT-HMM 모형을 개발하였다. 본 연구에서 개발된 동질성 CLT-HMM 모형을 사용하여 장기간의 수문자료를 보유하고 있는 기상청 산하의 한강유역 강수네트워크에 대해서 적합성을 검토하였다. 동질성 CLT-HMM 모형을 적용하여 모의 된 결과를 보면 일강수량의 계절적 특성뿐만 아니라 일강수량 모의 시 강수시계열의 통계적인 특성들까지 우수하게 모의하였다. 추가적으로 상관행렬(correlation matrix)을 이용하여 기상관측소간의 공간상관 재현성을 검토한 결과 관측지점들 사이의 공간상관성도 비교적 우수하게 재현하는 것을 확인할 수 있었다.