The stabilization technology for the damaged spent fuel is being developed to process the damaged fuel into sound pellet suitable for dry re-fabrication. It requires several treatments including oxidative decladding followed by reduction treatment for oxidized powder closely related to the quality of oxidized powders for pellet fabrication. For the development of operating condition for the reduction treatment, in this study, we evaluated the effect of air-cylinder based vertical shaking previously applied to oxidative decladding on powder reduction. For U3O8 of 50-100 g, the reduction test were applied with and without vertical shaking at 700°C under reduction atmosphere (Ar + 4%H2) and the concentration of hydrogen in effluent was measured to evaluate the reduction reaction. It was found that the vertical shaking system has allowed the reaction time of 50 g and 100 g U3O8 reduced by 33% compared to the test in static mode. Based on XRD analysis, the better crystallinity of the products was also achieved.
The stabilization techniques are highly required for damaged nuclear fuel to strengthen safety in terms of transportation, storage, and disposal. This technique includes recovering fuel materials from spent fuel, fabrication of stabilized pellets, and fabrication of fuel rods. Thus, it is important to identify the leaching behavior of the stabilized pellets to verify their stability in humid environments which are similar to storage conditions. In this study, we introduce various leaching experiment methods to evaluate the leaching behavior of the stabilized pellets, and determine the most suitable leaching test methods for the pellets. Also, we establish the leaching test conditions with various factors that can affect the dissolution and leaching behavior of the stabilized pellets. Accordingly, we prepare the simulated high- (55 GWd/tU) and low- (35 GWd/tU) burnup nuclear fuel (SIMFUEL) and pure UO2 pellets sintered at 1,550°C and 1,700°C, respectively. Each pellet is placed in a vessel and filled with DI water and perform the leaching test at three different temperature to verify the leaching mechanism at different temperature range. Based on the standard leaching test method (ASTM C1308-21), the test solution is removed from the pellet after specific time intervals and replaced in the fresh water, and the vessel is placed back into the controlled-temperature ovens. The test solutions are analyzed by using ICP-MS.