검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,171

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Sperm quality and the number of sperm introduced into the uterus during artificial insemination (AI) are pivotal factors influencing pregnancy outcomes. However, there have been no reports on the relationship between sperm concentration at AI and sperm quality in Hanwoo cattle. In this study, we examined sperm quality and pregnancy rates after AI using sperm inseminated at different concentrations. Methods: We evaluated the motility, viability, and acrosomal membrane integrity of sperm at different concentrations (10, 15, 18, and 20 million sperm/straw) in 0.5-mL straws. Subsequently, we compared the pregnancy rates after AI with different sperm concentrations. Results: After freeze-thawing, sperm at the assessed concentrations showed similar viability and acrosomal membrane integrity. After AI, cattle in the 10 million group had significantly lower pregnancy rates compared to those in the 18 and 20 million groups. Conversely, there were no statistically significant variances observed between cattle in the 10 and 15 million groups. Conclusions: Sperm at concentrations of 10, 15, 18 and 20 million per straw exhibited comparable motility, viability, and acrosomal membrane integrity. However, a concentration of at least 18 million sperm per straw is required to achieve a consistent rate of pregnancy rate in Hanwoo cattle after AI.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Henricia specimens were collected using a dual approach of trimix scuba diving and fishing nets. This inclusive collection encompasses the discovery of two species highlighted in this study and introduces and provides comprehensive descriptions for Henricia kinkasana and Henricia longispina aleutica. The descriptions offered in this study were derived from the thorough examinations of external morphological characteristics. The documentation provides detailed insight into key traits related to the abactinal and actinal skeletons and spines of these newly recorded species in Korea. This comprehensive examination contributes to our understanding of the distinct morphological characteristics defining each species within the genus Henricia.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In 2006, Cambodian Agriculture Research and Development Institute (CARDI) bred a high-quality tomato ‘Neang Pich’ variety. Since ‘Neang Pich’ is susceptible to Sclerotium rolfsii (S. rolfsii), it is severely affected the production major tomato growing regions. This study was conducted to evaluate the effect of seven S. rolfsii tolerant rootstocks on growth and yield in graft cultivation of ‘Neang Pich’ tomato. ‘Neang Pich’ seedlings were used as scion and non-grafted control. Six eggplant genotypes (‘2017053’, ‘2017062’, ‘17CJVC2’, ‘No. 80’, ‘VI041979A’, ‘VI041996’) and a commercial tomato variety (‘Hulk’) were used as rootstock. The grafted and non-grafted tomatoes were grown in a plastic greenhouse and open field. The survival rate of plants did not differ between plastic greenhouse (80.2%) and open field (79.5%). The top and root fresh weight of plants grown in a plastic greenhouse increased by 77% and 11% compared to the open field and the dry weight increased by 48% and 10%, respectively. The top (309 g) and root (18.9 g) fresh weight, and the top (90.5 g) and root (6.39 g) dry weight depending on rootstock were the highest in plants grafted onto ‘2017062’. The yield of tomatoes in a plastic greenhouse (19.5 MT/ha) was 65% higher than that of open field (11.8 MT/ha). The yield of tomatoes depending on rootstock were the highest in ‘2017062’ (17.8 MT/ha). The effect of cultivation practice and grafting on pH and sugar content (oBrix) of the fruit was non-significant difference (p0.05). The scion diameter, top fresh weight, fruit weight and yield (MT/ha) were significant difference (p0.05) in the interaction effect between tomato cultivation practices (plastic greenhouse and open field) and rootstock.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Porcine pluripotent stem cells (pPSCs) would provide enormous potential for agriculture and biomedicine. However, authentic pPSCs have not established yet because standards for pPSCs-specific markers and culture conditions are not clear. Therefore, the present study reports comparative pluripotency characteristics in porcine induced pluripotent stem cells (piPSCs) derived from different viral transduction and reprogramming factors [Lenti-iPSCs (OSKM), Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM)]. Methods: Porcine fibroblasts were induced into Lenti-iPSCs (OSKM) and Lenti-iPSCs (OSKMNL) by using Lentiviral vector and Sev-iPSCs (OSKM) by using Sendaiviral vector. Expressions of endogenous or exogenous pluripotency-associated genes, surface marker and in vitro differentiation in between Lenti-piPSCs (OSKM), Lenti-iPSCs (OSKMNL) and Sev-piPSCs (OSKM) were compared. Results: Colonial morphology of Lenti-iPSCs (OSKMNL) closely resembles the naïve mouse embryonic stem cells colony for culture, whereas Sev-iPSCs (OSKM) colony is similar to the primed hESCs. Also, the activity of AP shows a distinct different in piPSCs (AP-positive (+) Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM), but AP-negative (-) LentiiPSCs (OSKM)). mRNAs expression of several marker genes (OCT-3/4, NANOG and SOX2) for pluripotency was increased in Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM), but Sev-iPSCs (OSKM). Interestingly, SSEA-1 of surface markers was expressed only in Sev-iPSCs (OSKM), whereas SSEA-4, Tra-1-60 and Tra-1-81 were positively expressed in Lenti-iPSCs (OSKMNL). Exogenous reprogramming factors continuously expressed in Lenti-iPSCs (OSKMNL) for passage 20, whereas Sev-iPSCs (OSKM) did not express any exogenous transcription factors. Finally, only Lenti-iPSCs (OSKMNL) express the three germ layers and primordial germ cells markers in aggregated EBs. Conclusions: These results indicate that the viral transduction system of reprograming factors into porcine differentiated cells display different pluripotency characteristics in piPSCs.
        4,900원
        5.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To develop quality-improved bakery products, the influence of the partial replacement of wheat flour by Artemisia princeps leaf powder (APP) on the quality characteristics of cookies, including antioxidant activities, was investigated. Studies were carried out to evaluate the addition of different percentages of APP on the quality characteristics of cookies prepared by incorporating APP (1-4%) into wheat flour. The incorporation of APP significantly affected the cookies’ physicochemical parameters and sensory acceptance attributes. Such incorporation at different levels significantly reduced moisture content while increasing the cookie dough’s density (p<0.05). The spread ratio, loss rate, L*, and b* values of the cookies decreased, but their hardness and a* value increased significantly with increasing levels of APP substitution (p<0.05). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline- 6-sulphonic acid (ABTS) radical scavenging activities were significantly increased (p<0.05) with higher APP substitution and were well-correlated. Hedonic sensory results showed that cookies fortified with 2% APP generally received satisfactory and acceptable acceptance scores. Consumers seemed to prefer the cookie texture in terms of chewiness when the samples were softer and lighter but less reddish, whereas taste acceptance may be a dominant factor in overall acceptability.
        4,000원
        15.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor, which employs molten salt mixture as fuel, has many advantages in reactor size and operation compared to conventional nuclear reactor. In developing Molten Salt Reactor, the behavior of fission product in operation should be preliminary evaluated for the correct design of reactor and its associated system including off-gas treatment. In this study, for 100 Mw 46 KCl- 54 UCl3 based Molten Salt Reactor with operating life time of 20 year, the fission product behavior was estimated by thermodynamic modeling employing FactSage 8.2. Total inventory of all fission product were firstly calculated using OpenMC code allowing depletion during neutronic calculation. Then, among all inventory, 46 element species from Uranium to Holmium were chosen and given to the input for equilibrium module of Factsage with its mass. In phase equilibrium calculation, for the correct description of solution phase, KCl-UCl3 solution database based on modified quasichemical model in the quadruplet approximation (ANL/CFCT-21/04) was employed and the coexisting solid phase was assumed to pure state. With the assumption of no oxygen and moisture ingress into reactor system, equilibrium calculation showed that 1% of solid phase and of gas phase were newly formed and, in gas phase, major species were identified : ZrCl4 (47%), Xe (33%), UCl4 (14%), Kr (5%), Ar (1%) and others. This result reveals that off-gas treatment of system should account for the appropriate treatment of ZrCl4 and UCl4 besides treatment of noble gas such as Xe and Kr.
        16.
        2023.11 구독 인증기관·개인회원 무료
        Most of the C-14 produced is in the organic form, generated as methane (14CH4), methanol (14CH3OH), formaldehyde (14CH2O), and formic acid (14CO2H2). When analyzing C-14, it is transformed into the form of 14CO2, and its concentration is determined using LSC. Typical examples include the wet oxidation method, the combustion or Pyrolysis. The wet oxidation method uses strong acids and involves repeated operations, which generates large amounts of acid waste and secondary radioactive waste. The combustion method uses high temperatures, which requires an oxygen device. Pyrolysis also requires high temperature in a vacuum and catalysts. Catalysts are expensive because they are platinum-based. To compensate for these shortcomings, a C-14 analysis method using UV irradiation was developed. In this study, 100 mL of distilled water mixed with formic acid (CO2H2), potassium persulfate (K2S2O8), and silver nitrate (AgNO3) was irradiated with a 320-390 nm UV lamp to conduct a CO2 production reaction experiment. The UV range was measured using a photometer (UV Power puck II). The beaker was made of quartz in 150 mL size with three inlets : a temperature measurement, a sample inlet, and a collection tube connector. We changed the UV lamp used from a 450 W halogen lamp to a 100 W LED, which has a lower temperature and is safer. As a result of the experiment, CO2 bubbles were generated in the collection tube, due to the UV irradiation react, which uses oxidizer and catalysts. The maximum temperature of the solution irradiated with the LED UV lamp was less than 56°C. It confirmed the rate of bubble generation changed depending on the lamp distance, the amount of sample, oxidizer, and catalyst. In an experiment to confirm the reaction caused by heat, it was found that although a reaction occurred due to heat, the reaction was significantly lower than when using a UV lamp. The reproducibility experiment was conducted three times in total under the same conditions. It showed the same pattern. In the future, we plan to select mock samples, collect 14CO2 in Carbo- Sorb, and analyze them using LSC. The results of this research will be used as a technology to recover C-14 more safely and efficiently and will also be used to expand its application to the treatment of other wastes such as waste liquid and waste resin through simulated samples.
        17.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
        18.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning process of nuclear power plants, Ni-59, Ni-63 and Fe-55 present in radioactive waste are crucial radionuclides used as fundamental indicators in determining waste treatment methods. However, due to their low-energy emissions, the chemical separation of these two radionuclides is essential compared to others. Therefore, this study aims to evaluate the suitability of various pre-treatment methods for decommissioning waste materials by conducting characteristic assessments at each chemical separation stage. The goal is to find the most optimized pre-treatment method for the analysis of Ni-59, Ni-63 and Fe-55 in decommissioning waste. The comparative evaluation results confirm that the chemical separation procedures for Fe and Ni are very stable in terms of stepwise recovery rates and the removal of interfering radionuclides. However, decommissioning waste materials, which mainly consist of concrete, metals, etc., possess unique properties, and a significant portion may be low-radioactivity waste suitable for on-site disposal. Considering that the chemical behavior and reaction characteristics may vary at each chemical separation stage depending on the matrix properties of the materials, it is considered necessary to apply cascading chemical separation or develop and apply individual chemical separation methods. This should be done by verifying and validating their effectiveness on actual decommissioning waste materials.
        19.
        2023.11 구독 인증기관·개인회원 무료
        The inorganic scintillator used in gamma spectroscopy must have good efficiency in converting the kinetic energy of charged particles into light as well as high light output and high light detection efficiency. Accordingly, various studies have been conducted to enhance the net-efficiency. One way to improve the light yield has been studied by coating scintillators with various nanoparticles, so that the scintillation light can undergo resonance on surface between scintillators and nanoparticles resulting in higher light yield. In this study, an inorganic scintillator coated with CsPbBr3 perovskite nanocrystals using dip coating technique was proposed to improve scintillation light yield. The experiment was carried out by measuring scintillation light output, as the result of interaction between inorganic scintillator coated with CsPbBr3 perovskite nanocrystals and gamma-ray emitted from Cs-137 gamma source. The experimental results show that the channel corresponding to 662 keV full energy peak in the Cs-137 spectrum shifted to the right by 14.37%. Further study will be conducted to investigate the detailed relationships between the scintillation light yield and the characteristics of coated perovskite nanoparticles, such as diameter of nanoparticles, coated area ratio and width of coated region.
        20.
        2023.11 구독 인증기관·개인회원 무료
        Tc-99 is considered as one of the major fission products in the context of disposal of spent nuclear fuel, due to the long half-life and chemical stability. In the atmospheric aqueous solutions, Tc is expected to exist in the form of TcO4 ‒ and thus is considered as an environmental concern according to its high solubility and mobility. Therefore, the development of an effective and economically viable adsorbent for aqueous Tc(VII) is imperative from the perspective of decontamination and remediation of contaminated environments. In this work, the adsorption behaviors of Re(VII), as a chemical surrogate of Tc(VII), onto the bentonites modified with two different organic cations such as hexadecyl pyridinium (HDPy) and hexadecyl trimethylammonium (HDTMA) were quantitatively analyzed and compared with each other. For the sorption experiment, adsorbents were prepared by surface modification of bentonite. Before the modification, the initial bentonite was pre-treated with 1 M NaClO4 and then reacted with HDPy or HDTMA. The modification process was performed at room temperature for 24 hours with various concentrations of organic cations, which were set to a range of 50-400% compared to the cation exchange capacity (CEC) of bentonite. After the reaction, the dried and crushed modified bentonites were filtered with the sieve with a mesh size of 63 μm. Aqueous Re(VII) solutions were prepared by dissolution of NH4ReO4 (Sigma-Aldrich) in deionized water with three different Re(VII) concentrations of 10-4M, 10-5M, and 10-6M. After that, the modified bentonite and the aqueous Re(VII) solutions were mixed at a liquid-to-solid ratio of 1 g/L. Aliquots of the samples were extracted for quantification analysis with ICP-MS after syringe filtration (pore size: 45 μm) at reaction times of 10, 50, 100, and 500 minutes. According to the results, a considerably fast adsorption reaction of Re(VII) onto all modified bentonites was observed, revealing exceptional sorption affinity of HDPy- and HDTMA-modified bentonites. For both organic cations, bentonites modified with the concentrations of organic cations ranging from 200 to 400% relative to the CEC of bentonite showed almost complete removal of aqueous Re(VII). For bentonites modified with lower concentrations of organic cations, the HDTMA presented a relatively larger sorption capacity than the HDPy. The result obtained through this study is expected to be referred to as a case study for the synthesis of cost-efficient and highly effective adsorbent material for highly mobile anionic radionuclides such as I‒ and TcO4 ‒.
        1 2 3 4 5