논문 상세보기

A New Method Using UV Irradiation for Radiocarbon Analysis

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431566
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Most of the C-14 produced is in the organic form, generated as methane (14CH4), methanol (14CH3OH), formaldehyde (14CH2O), and formic acid (14CO2H2). When analyzing C-14, it is transformed into the form of 14CO2, and its concentration is determined using LSC. Typical examples include the wet oxidation method, the combustion or Pyrolysis. The wet oxidation method uses strong acids and involves repeated operations, which generates large amounts of acid waste and secondary radioactive waste. The combustion method uses high temperatures, which requires an oxygen device. Pyrolysis also requires high temperature in a vacuum and catalysts. Catalysts are expensive because they are platinum-based. To compensate for these shortcomings, a C-14 analysis method using UV irradiation was developed. In this study, 100 mL of distilled water mixed with formic acid (CO2H2), potassium persulfate (K2S2O8), and silver nitrate (AgNO3) was irradiated with a 320-390 nm UV lamp to conduct a CO2 production reaction experiment. The UV range was measured using a photometer (UV Power puck II). The beaker was made of quartz in 150 mL size with three inlets : a temperature measurement, a sample inlet, and a collection tube connector. We changed the UV lamp used from a 450 W halogen lamp to a 100 W LED, which has a lower temperature and is safer. As a result of the experiment, CO2 bubbles were generated in the collection tube, due to the UV irradiation react, which uses oxidizer and catalysts. The maximum temperature of the solution irradiated with the LED UV lamp was less than 56°C. It confirmed the rate of bubble generation changed depending on the lamp distance, the amount of sample, oxidizer, and catalyst. In an experiment to confirm the reaction caused by heat, it was found that although a reaction occurred due to heat, the reaction was significantly lower than when using a UV lamp. The reproducibility experiment was conducted three times in total under the same conditions. It showed the same pattern. In the future, we plan to select mock samples, collect 14CO2 in Carbo- Sorb, and analyze them using LSC. The results of this research will be used as a technology to recover C-14 more safely and efficiently and will also be used to expand its application to the treatment of other wastes such as waste liquid and waste resin through simulated samples.

저자
  • Eunkyeom Lee(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI))
  • Chan-Yong Jung(Korea Atomic Energy Research Institute (KAERI))
  • Byungman Kang(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Jong-Yun Kim(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Dong Woo Lee(Korea Atomic Energy Research Institute (KAERI))
  • Tae-Hyeong Kim(Korea Atomic Energy Research Institute (KAERI))
  • Sang Ho Lim(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI))
  • Jeongmook Lee(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI))