검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.11 구독 인증기관·개인회원 무료
        Tc-99 is considered as one of the major fission products in the context of disposal of spent nuclear fuel, due to the long half-life and chemical stability. In the atmospheric aqueous solutions, Tc is expected to exist in the form of TcO4 ‒ and thus is considered as an environmental concern according to its high solubility and mobility. Therefore, the development of an effective and economically viable adsorbent for aqueous Tc(VII) is imperative from the perspective of decontamination and remediation of contaminated environments. In this work, the adsorption behaviors of Re(VII), as a chemical surrogate of Tc(VII), onto the bentonites modified with two different organic cations such as hexadecyl pyridinium (HDPy) and hexadecyl trimethylammonium (HDTMA) were quantitatively analyzed and compared with each other. For the sorption experiment, adsorbents were prepared by surface modification of bentonite. Before the modification, the initial bentonite was pre-treated with 1 M NaClO4 and then reacted with HDPy or HDTMA. The modification process was performed at room temperature for 24 hours with various concentrations of organic cations, which were set to a range of 50-400% compared to the cation exchange capacity (CEC) of bentonite. After the reaction, the dried and crushed modified bentonites were filtered with the sieve with a mesh size of 63 μm. Aqueous Re(VII) solutions were prepared by dissolution of NH4ReO4 (Sigma-Aldrich) in deionized water with three different Re(VII) concentrations of 10-4M, 10-5M, and 10-6M. After that, the modified bentonite and the aqueous Re(VII) solutions were mixed at a liquid-to-solid ratio of 1 g/L. Aliquots of the samples were extracted for quantification analysis with ICP-MS after syringe filtration (pore size: 45 μm) at reaction times of 10, 50, 100, and 500 minutes. According to the results, a considerably fast adsorption reaction of Re(VII) onto all modified bentonites was observed, revealing exceptional sorption affinity of HDPy- and HDTMA-modified bentonites. For both organic cations, bentonites modified with the concentrations of organic cations ranging from 200 to 400% relative to the CEC of bentonite showed almost complete removal of aqueous Re(VII). For bentonites modified with lower concentrations of organic cations, the HDTMA presented a relatively larger sorption capacity than the HDPy. The result obtained through this study is expected to be referred to as a case study for the synthesis of cost-efficient and highly effective adsorbent material for highly mobile anionic radionuclides such as I‒ and TcO4 ‒.