빠르게 발전하는 이미지 인식 기술에도 불구하고 표 형식의 문서와 수기로 작성된 문서를 완벽하게 디지털화하기에는 아직 어려움이 따른다. 본 연구는 표 형식의 수기 문서인 선박 항해일지를 작성하는 데에 사용되는 규칙을 이용하여 보정 작업을 수행함으로 써 OCR 결과물의 정확도를 향상시키고자 한다. 이를 통해 OCR 프로그램을 통하여 추출된 항해일지 데이터의 정확성과 신뢰성을 높일 것 으로 기대된다. 본 연구는 목포해양대학교 실습선 새누리호의 2023년에 항해한 57일간의 항해일지 데이터를 대상으로 OCR 프로그램 인 식 후 발생한 오류를 보정하여 그 정확도를 개선하고자 하였다. 이 모델은 항해일지 기재 시 고려되는 몇 가지 규칙을 활용하여 오류를 식별한 후, 식별된 오류를 보정하는 방식으로 구성하였다. 모델을 활용하여 오류를 보정 후, 그 효과를 평가하고자 보정 전과 후의 데이터 를 항차별로 구분한 후, 같은 항차의 같은 변수끼리 비교하였다. 본 모델을 활용하여 실제 셀 오류율은 약 11.8% 중 약 10.6%의 오류를 식 별하였고, 123개의 오류 중 56개를 개선하였다. 본 연구는 항해일지 중 항해정보를 기입하는 Dist.Run부터 Stand Course까지의 정보만을 대 상으로 수행하였다는 한계점이 있으므로, 추후 항해정보 뿐만 아니라 기상정보 등 항해일지의 더 많은 정보를 보정하기 위한 연구를 진 행할 예정이다.
머신러닝 기법의 발달과 함께 기계에서 발생하는 다양한 종류(진동, 온도, 유량 등)의 데이터를 활용하여 기계의 상태를 진단하고 이상 탐지 및 비정상 분류 연구도 활발히 진행되고 있다. 특히 진동 데이터를 활용한 회전 기계의 상태 진단은 전통적인 기계 상태 모니터링 분야로 오랜 기간 동안 연구가 진행되었고, 연구 방법 또한 매우 다양하다. 본 연구에서는 가정용 에어컨에 사용되는 로터리 압축기에 가속도계를 직접 설치하여 진동 데이터를 수집하는 실험을 진행하였다. 데이터 부족 문제를 해결하기 위해 데이터 분할을 수행하였으며, 시간 영역에서의 진동 데이터로부터 통계적, 물리적 특징들을 추출한 후, Chi-square 검증을 통해 고장 분류 모델의 주요 특징을 추출하였다. SVM(Support Vector Machine) 모델은 압축기의 정상 혹은 이상 유무를 분류하기 위해 개발되었으며, 파라미터 최적화를 통해 분류 정확도를 개선하였다.