This study explores the use of a Deep Autoencoder model to predict depression among plant and machine operators, utilizing data from the Korean National Health and Nutrition Examination Survey (KNHANES, n=3,852). The Deep Autoencoder model outperformed the Logistic Regression, Naive Bayes, XGBoost, and LightGBM models, achieving an accuracy of 86.5%. Key factors influencing depression included work stress, exposure to hazardous substances, and ergonomic conditions. The findings highlight the potential of the Deep Autoencoder model as a robust tool for early identification and intervention in workplace mental health.