In this research, a new Test and Evaluation (T&E) procedure for defense AI systems is proposed to fill the existing gap in established methodologies. This proposed concept incorporates a data-based performance evaluation, allowing for independent assessment of AI model efficacy. It then follows with an on-site T&E using the actual AI system. The performance evaluation approach adopts the project promotion framework from the defense acquisition system, outlining 10 steps for R&D projects and 9 steps for procurement projects. This procedure was crafted after examining AI system testing standards and guidelines from both domestic and international civilian sectors. The validity of each step in the procedure was confirmed using real-world data. This study's findings aim to offer insightful guidance in defense T&E, particularly in developing robust T&E procedures for defense AI systems.
The purpose of this paper is to suggest the methodology for the establishment of operational concept for speed-up of defense robot and improvement direction of the defense acquisition system for the defense robot. In order to achieve this goal, the current defense acquisition system was analyzed into long-term planning, mid-term programming, and project execution stages. And I suggest the methodology for the establishment of operational concept for speed-up of defense robot and direction of development of the defense robot acquisition system considering the characteristics of the robot in terms of core technologies of robot, robot ecosystem and effectiveness-based-robot-design, respectively. Based on the methodology for establishment of the operational concept of defense robot and development direction of the defense acquisition system presented in this study, it will be possible to design efficiently the defense robot in the future.