Genomic reprogramming factors in the GV cytoplasm improved cloning efficiency in mice through the pre‐exposure of somatic cell nuclei to a GV cytoplasmic extract prior to nuclear transfer. In this study, a pig GV oocyte extract (pGV extract) was developed. Treatment of pig fibroblasts with the pGV extract promoted colony formation after 2–3 weeks in culture, concomitant with the expression of stem cell markers (Oct‐4, Rex1, Nanog, Sox2) and repression of differentiated cell markers (CKAP2, NPR3 ). Using fibroblasts transfected with human Oct‐4 promoter‐driven enhanced green fluorescent protein (Oct4‐EGFP), pGV extract treatment induced the reactivation of the Oct‐4 promoter in Oct4 ‐ EGFP cells by 10 days post‐treatment. These transgenic donor cells were injected into 8‐cell embryos. Oct‐4 promoter activity was subsequently detected in most ICM cells of the host blastocyst. Interestingly, reconstructed embryos with pGV extract‐treated Oct4‐ EGFP fibroblast nuclei showed prolonged expression of Oct4 in the ICM of embryos. Additionally, the pGV extract promoted somatic cell reprogramming and cloned embryo development when assessed by measuring histone H3‐K9 hypomethylation, the expression of Oct4 and Nanog in blastocysts, and the production of increased numbers of high‐ quality blastocysts. Under specific culture conditions, pGV extract‐treated fibroblast cells differentiated into neuronal, pancreas, cardiac, and endothelial lineages that were confirmed by antibodies against specific marker proteins. These data provide evidence for the generation of stem‐like cells from differentiated somatic cells by treatment with GV oocyte extracts in pig.
Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst‐stage embryos spontaneously have ability to differentiate via embryo‐like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte‐like cells differentiation from hESCs by treatment of induced‐factors, 5‐azacytidine, BMP‐4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte‐like cells showed that cardiac markers are expressed for further analysis by RT‐PCR and immunocytochemistry. Interestingly, BMP‐4 greatly improved mogeneous population of the cardiomyocyte‐like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.
본 연구는 단위발생유래 생쥐 배아줄기세포(P-mES)지가 체외수정유래 생쥐 배아줄기세포 (mES)와 마찬가지로 기능성 심근세포로 체외 분화되는지를 조사하였다. 각 세포주 P-mES04와 MES03를 4일간 부유 배양하여 배아체 (EB)를 형성한 다음 4일간 DMSO를 추가적으로 처리한 뒤 젤라틴이 코팅된 배양접시에 부착시켰다(4-/4+). P-mES04와 mES03으로부터 수축성 심근세포 생성 여부를 30일간 관찰한 결과, 각각 13일(69.83%)과 22일 (61.3%)에 누적 형성율이 가장 높았다. 면역 세포화학염색 결과, 수축성을 나타내는 P-mES04 세포는 수축성 mES03 세포에서와 같이 근육 특이적인 anti-sarcomeric a-actinin 항체와 심근 특이적인 anti-cardiac troponin I 항체에 염색되는 것을 확인하였다. 또한 RT-PCR 결과, 수축성을 나타내는 P-mES04 세포는 심근특이적인 L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide 7β, GATA binding protein 4와 atrial natriuretic factor는 발현하나, 골격근 특이적인 L-type calcium channel, a1S는 발현하지 않아 웅성 성체의 심장세포와 유사한 양상을 보였다. 본 연구의 결과는 단위발생 유래 생쥐 배아 줄기세포를 배아줄기세포의 연구의 대체제로 이용할 수 있음을 보여준다.
Embryonic stem (ES) cells proliferate extensively in the undifferentiated state and have the potential to differentiate into a variety of cell types in response to various environmental cues. The generation of functional dopaminergic neurons from ES cells is promising for cell replacement therapy to treat Parkinson's disease. We compared the in vitro differentiation potential of pluripotent human embryonic stem (hES, MB03) cells induced with basic fibroblast growth factor (bFGF) or retinoic acid (RA). Both types of treatment resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with brain derived neurotrophic factor (BDNF) or transforming growth factor (TGF)- during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression, compared to control (P<0.05). In contrast, no effect was observed on the rate of mature or glutamic acid decarboxylase-positive neurons. Immunostaining and HPLC analyses revealed the higher levels of TH (20.3%) and dopamine in bFGF and TGF- treated hES cells than in RA or BDNF treated hES cells. The results indicate that TGF- may be successfully used in the bFGF induction protocol to yield higher numbers of functional dopaminergic neurons from hES cells.