검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 59

        1.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
        2.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning of nuclear facilities happens, large amounts of radioactive wastes are released. Because costs of nuclear decommissioning are enormous, effective and economical decontamination technologies are needed to remove radioactive wastes. During NPP operation, corrosion product called Chalk River Unidentified Deposits (CRUD) is generated. CRUD is an accumulation of substances and corrosion products consisting of dissolved ions or solid particles such as Ni, Fe, and Co on the surface of the NPP fuel rod coating. CRUD is slowly eroded by the circulation of hot pressurized water and later deposits on the fuel rod cladding or external housing, thereby reducing heat production by the nuclear fuel. Decontamination of radiologically contaminated metals must be performed before disposal, and several methods for decontaminating CRUD are being studied in many countries. Decontamination technology is an alternative to reducing human body covering and reducing radioactive waste disposal costs, and much research and development has been conducted to date. Currently, the importance of decontamination is emerging as the amount of waste stored in radioactive waste storage is close to saturation, and the amount of radioactive waste generated must be minimized through active decontamination. In this study, a preliminary study was conducted on the removal of CRUD by multiple membrane in an electro-kinetic process using an electrochemicalbased decontamination method. Preliminary research to develop a technology to electrochemically remove CRUD by using a self-produced electrochemical cell to check the pH change over time of the CRUD cell according to voltage, electrolyte, membrane and pH change.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The primary heat transport system consists mainly of the in-core fuel channels connected to the steam generators by a system of feeder pipes and headers. The feeders and headers are made of carbon steel. Feeders run vertically upwards from the fuel channels across the face of the reactor and horizontally over the refueling machine to the headers. Structural materials of the primary systems of nuclear power plants (NPPs) are exposed to high temperature and pressure conditions, so that the materials employed in these plants have to take into accounts a useful design life of at least 30 years. The corrosion products, mainly iron oxides, are generated from the carbon steel corrosion which is the main constituent of the feeder pipes and headers of this circuit. Typical film thickness on CANDU-PHWR surface is 75μm or 30mg/cm2. Deposits on PHWR tends to be much thicker than PWR due to use of carbon steel and also for the source of corrosion products available on the carbon steel surface. Degradation of carbon steel for the feeder pipes transferring the primary system coolant by flow-assisted corrosion in high temperature has been reported in CANDU reactors including Point Lapreau, Gentully-2, Darlington and Bruce NPPs. The formation of Fe3O4 film on a carbon steel surface reduces the dissolution rate of steel substantially. The protectiveness of the Fe3O4 film over the carbon steel is affected by the environmental factors and the operational parameters of the feeder pipes, including the velocity, wall shear stress, solution pH, temperature, concentration of dissolved iron, quality of solution, etc. For effective chemical decontamination of these thick oxides containing radionuclides such as Co-60, it is necessary to understand the corrosion behaviors of feeder pipes and the characteristics of oxide formed on it. In this work, we investigated the growth of oxide films that develop on type SA-107 Gr. B carbon steel in high temperature water and steam environment by scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GD-OES) for the quantification and the solidstate speciation of metal oxide films. This study was especially focused to set the experimental tests conditions how to increase the oxide thickness up to 50 m by changing the oxidation conditions, such as solution chemistry and thermo-hydraulic conditions both temperature and pressure and so on.
        6.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스탠다드국화 신품종을 육성하기 위하여 충남농업기술원 화훼연구소에서 2009년에 황색의 모본 ‘Summer Yellow’와 부본 ‘ST07-09-02’계통을 인공 교배하였다. 2010년에 종자를 파종하였고, 이중 내병성이 강하고 기호성이 우수한 개체를 선발하여 ‘ST10-047-01’로 계통명을 부여하였다. 2011년부터 2013년까지 주년 생산성을 위해 촉성 및 자연, 억제재배 특성을 각각 검정하였으며, 2013년 ‘Geumhwa’로 명명하고 품종등록 출원하였다. ‘Geumhwa’의 생육 및 개화특성은 국내에서 많이 재배되고 있는 황색 스탠다드국화인 ‘Summer Yellow’를 대조 품종으로 하여 조사하였다. ‘Geumhwa’ 품종은 자연개화기가 10월 6일로 ‘Summer Yellow’의 10월 25일에 비해 빨랐다. ‘Geumhwa’는 초장이 86.3cm로 ‘Summer Yellow’의 93.8cm보다 작았고, 곁가지 제거수는 8.1개로 ‘Summer Yellow’의 16.6개보다 적었다. ‘Geumhwa’의 꽃직경은 13.6cm로 ‘Summer Yellow’의 13.5cm와 비슷하였으며, 꽃잎수는 ‘Geumhwa’가 263.6개로 ‘Summer Yellow’의 295.3개보다 적었다. 재배상 유의사항은 ‘Geumhwa’는 중간종이므로 초기생육이 왕성하도록 비배 관리를 하고 생육기간 중 지베렐린 1,000mg・L-1를 2회 처리하여 신장력을 높이도록 한다. 또한 설상화수가 적은 편이므로 재전조를 실시하여 설상화수를 늘린다면 황색의 연중 조기개화가 가능한 고품질 신품종 스탠다드 절화국화로써 소비자 기호 충족 및 농가소득 창출에 기여할 수 있을 것으로 기대된다.
        4,000원
        9.
        2015.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm-1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm-1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.
        3,000원
        10.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment (200°C to 300°C), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.
        4,000원
        12.
        2013.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study has investigated the effect of isometric contractile force and muscle activity applying sperficial heat according to the time from the biceps brachii muscle. In this study, 20 university students participants without musculoskeletal and neurological disorders. By applying a hot pack 5min, 10min, 20min and 30min respectively. After that measurement are skin temperature, contractile force and muscle activity. Skin temperature of the hot 5 min applied that rapidly changing. Increasing the time it takes to apply a variance has been reduced(p<.001). Isometric contractile force was not statistically significant but highest when applying the hot pack 5 minutes and lowest when applying the hot pack 30 minutes(p<.001). Muscle activity and median frequency was highest when applying the hot pack 5 minutes. To analyze the above results, it was found that isometric contractile force and muscle activity changed according to the applying time. These result lead us to the conclusion that this study will be more evidence for changes in muscle contraction to apply hot pack on clinic.
        4,000원
        17.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        세 종류의 산화물(TiO2(아나타제), SiO2(비결정성) 및 Al2O3(비결정성)) 표면에 U(VI)이 흡착될 때 유기산 이 미치는 영향을 연구하였다. 유기산으로는 살리실산과 피콜린산을 사용하였다. 유기산의 존재 여부에 따 라 달라지는 U(VI)의 흡착률 변화를 pH 함수로 측정하였다. 또한 U(VI)의 존재 여부에 따라 달라지는 유기 산의 흡착량을 pH 함수로 측정하였다. TiO2의 경우, 살리실산과 피콜린산이 U(VI)과 수용성 착물을 형성함 으로써 U(VI)의 흡착률을 저하시킨다. SiO2의 경우, 살리실산은 U(VI) 흡착에 영향을 주지 않지만, 피콜린산 은 오히려 U(VI) 흡착을 증가시킨다. 이 현상을 삼성분 표면착물(ternary surface complex) 생성으로 해석하였으며 U(VI) 흡착에 의존하는 피콜린산의 흡착량 변화, 그리고 흡착된 U(VI)의 형광 특성 변화로 이를 확인 하였다. Al2O3의 경우, 살리실산과 피콜린산 모두 U(VI) 흡착과 무관하게 높은 흡착량을 보였으나 U(VI) 흡 착을 감소시키지는 않았다. 따라서 삼성분 표면착물 생성을 배제할 수 없으나 이를 확인하기 위해서는 분광 분석과 같은 추가 연구가 필요하다.
        4,000원
        1 2 3