This study is about the control method of smart skin applying SPD(Suspended Particles Display). Smart skin is a self-developed composite window system for the purpose of reducing the cooling load and lighting load. The simulation by TRNSYS18 was modeled in detail based on an actual office located in Jeonju. The previously studied smart skin control method (case1) is a time-dependent control method, and a new control method (case2) was devised based on the data that consideration of daily insolation is important in an actual environment. As a result of simulation by case1, it was found that the amount of cooling energy and lighting energy saved was reduced by 15.1% and 39.2%, respectively, compared to the general model. As a result of the simulation by case2, it was found that the amount of cooling energy and lighting energy saved was reduced to 17.6% and 57.5%, respectively, compared to the general model. Therefore, the newly proposed control method considering the amount of insolation and time was found to be effective in reducing cooling energy and lighting energy.
In this study, a smart skin system that combines SPD (suspended particle display) and LGG (Lighting Guide Glass) and its optimal control method was developed for the purpose of simultaneously reducing the lighting load and cooling load in office buildings. And a demonstration site was built to test the results. The demonstration site was constructed as an experimental group with a smart skin system installed and a control group with a general window system installed. When the cooling energy consumption of the experimental group to which the smart skin system was applied was reduced by about 36.9% compared to the control group, the lighting energy was also reduced by 54.4%.