The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.
Diesel engine is used many industrial fields such as ship, power plant and big-sized vehicles and so on. Roto cap is one of the parts of system of intake and exhaust valve. Roto cap consists of body, disc spring, spring & steel ball, retainer and stop ring. Disc spring is known as taking cyclic load and cyclic load leads to fatigue damage. This study aims to investigate the stability of disc spring due to fatigue damage. As the results, the fatigue life of disc spring according to cylic load could be predicted using fatigue analysis. Consequently, disc spring showed the stability of about 1.7~2 times for criterion load of 1370N.