도암만은 전남 장흥군, 강진군, 해남군, 완도군 등 4개 군으로 둘러싸인 전형적인 하구형 만으로, 남북방 향 길이 약 19km, 최대너비 약 7km의 네 방향으로 갈라진 십자형의 형태로, 만내에는 크고 작은 8개의 유 인도 및 무인도가 있으며, 남부에는 완도, 고금도 등이 위치하여 이들 사이의 수로를 통해 해수가 제한적으 로 유출입하는 반폐쇄성 만으로 파랑에 의한 영향이 적다. 만내로 전란남도의 3대강 중의 하나인 탐진강 하천수와 강진천, 칠량천, 대구천의 하천수가 유역으로 유입되면서 담수와 해수의 교환이 이루어지고 담수 유입량에 의해 조류가 영향을 받고 있다. 효율적인 내만의 수질관리를 위해서는 우선 부하발생원에 따른 오염배출량이 어느 정도 인지 확인하고 해역의 환경용량과 환경기준을 만족하기 위해서 부하삭감량을 산정하는 사전대책이 요구된다. 연안해역의 수질에 영향을 끼치는 부하발생원은 크게 점오염원과 비점오염원으로 구분되는데, 비점오염원은 강우시 도 시지역이나 농경지 및 산림지역의 유출수로 파악될 수 있지만, 유입지점을 명확하게 찾기 어렵고, 일간 계 절간 배출량 변화가 크며 예측과 정량화가 어려워서 관리가 힘든 특징이 있다. 이에 반해 점오염원은 가정 하수, 공장폐수 등으로 구성되며 일정한 지점에서 일정량이 지속적으로 발생하여서 배출구와 배출단위가 파 악가능하기 때문에 수질관리를 위한 부하삭감량 산정의 주 대상이 되고 있다. 따라서 본 연구에서는 해역으로 유입하는 외부부하량을 실측하고 분석하여 득량만의 효과적인 연안해역 의 수질관리의 기초자료로 활용하고자 한다. 하천 부하량 조사는 도암만 유역에 포함되는 하천 24개 지점을 대상으로 하였으며, 조사 시기는 3월부터 12월까지 매월 1회 실시 하였고, 각각의 유입하천은 직독식 전자 유속계(ACM-200PC) 및 부표를 이용하여 유속을 측정한 다음, 단면적을 계산하여 각 유입원의 유량을 산정 하였다. 각 시점에서 채수한 하천수의 pH, 수온, 염분, 전기전도도, 화학적 산소요구량(CODMn) ), 총질소(T-N), 총인(T-P), 용존산소(DO), 부유물 질(SS), 용존무기질소(DIN), 용존무기인(DIP) 등을 분석하였고, 환경부 수질오염공정시험방법(환경부, 2008), 해양환경공정시험기준(국토해양부, 2008), 준하여 분석하여 유량과 곱해서 그 부하량을 산정하였다. 하천 유량의 월별 총합은 821590∼5971583 m3/day 이고, 부유물질(SS)과 화학적 산소요구량(COD), 용존 무기질소(DIN), 용존 무기인(DIP), 총질소(TN), 총인(TP), 월별 부하량은 각각 6070.3∼47781.3(평균 20999.4)kg/day, 3570.5∼21471.5(평균 9455.2)kg/day, 843∼5042.4(평균 2015.1)kg/day, 14.2∼163.7(평균 66.7)kg/day, 1249.2∼10166.9(평균 4151.3)kg/day, 47.3∼390.8(평균 165.9)kg/day 이다.
Doam Bay is an estuary where harmful algal blooms (HABs) such as red tides develop frequently in summer. The bay also is influenced by freshwater inflow from Tamjin River in upper regions as well as from an artificial lake in lower regions. Phytoplankton size and species composition were investigated at six stations located in the lower regions in April, June and July, 2007. Physical properties (temperature, salinity and SS) were intensively measured for 3 days (5 occasions) after the freshwater discharges from the dike. The freshwater discharge affected temperature, salinity and turbidity in the study sites adjacent to the freshwater lake. Phytoplankton biomass was larger in April than June and it increased more in July. An explicit shift of species composition was observed. Diatoms were dominant in April and June (>70%) whereas their abundances greatly decreased and chlorophytes increased in July. Pseudo-nitzschia sp. was dominant at all stations (except St. 2) and this change was also detected in ecological indices such as diversity and dominance index.
Seasonal and stational variation of SS and COD were investigated from February 2008 to December 2010 and the relationship between them was discussed. During three years monitoring, SS decreased significantly (46% decline) possibly due to the increase of precipitation and thereby resulting salinity drop. COD on average was the highest in 2009. SS was the highest in autumn and the lowest in winter, and over 72% of SS was FSS. While SS is high in the upper sampling stations of the bay with shallow water, COD values do not show any relationship to the geomorphological characteristics. CODins, which was defined as COD after filtration, ranged 56%(winter) ~ 44.6%(summer) and showed no correlation with SS. It indicates that high SS concentration is not necessarily related to the high CODins. The seasonal CODins/SS data, which can be interpreted as COD density in SS, shows that SS in winter contains the dense COD materials compared to the other seasons.