검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2010.05 구독 인증기관·개인회원 무료
        Electroantennogram techniques (EAGs) were employed to record olfactory responses in the antennae of the adult female stable fly, Stomoxys calcitrans (Diptera: Muscidae), to Zanthoxylum piperitum pericarp steam distillate (ZP-SD), Z. armatum seed oil (ZA-SO) and their 29 volatile constituents alone as well as binary mixture of the ZP-SD and ZA-SO with 1-octen-3-ol. The electrophysiological responses of the test materials were compared with those of DEET and 1-octen-3-ol. At concentration of 10-1 (v/v) in mineral oil, ZP-SD, ZA-SO, and all volatiles elicited EAG responses in the fly antennae except for DEET, which is extremely low volatile. ZP-SD, ZA-SO, and some of the test volatiles elicited EAG responses rather lower than 1-octen-3-ol, which showed vapor phase repellency and toxicity to the fly in our previous behavioral research. This suggests that the stable fly possesses olfactory receptor neurons responding to given repellent compounds per se. In binary mixture with 1-octen-3-ol at concentration of 10-1, ZP-SD and ZA-SO elicited 16±0.55 and 18±0.63 mV while ZP-SD, ZA-SO, and 1-octen-3-ol alone elicited responses of 14±0.45, 15.8±0.37 and 16.2±0.58 mV, respectively. Among the volatile compounds, terpinen- 4-ol, β-myrcene, α-phellanderene, citronellal, and limonene oxide elicited 80 – 96% relative EAG amplitude compared to 1-octen-3-ol as a reference (100%). Based on structure-activity relationships, constituents having aldehyde moiety elicited bigger EAG responses than those of alcohol or ether one. The perception in the fly antenna to plant volatile compounds exhibited complicated patterns of olfactory responses. Current and future directions of this study on sensory processing mechanisms underlying repellent behaviors will be discussed.