A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of pathenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to a Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delays bovine plasma clotting time and inhibits both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene expresses at all stages of the tick except for the egg stage and mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene led to a 2-day extension of the tick blood feeding period, and 27.7% of the ticks did not successfully complete the blood feeding. These findings indicate that the newly indentified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.
To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.
Molecular markers are useful for selecting to include superior character genetic like as strong immune system and rapid growth in fish. The marker is also very important part of breeding technology in Olive flounder (Paralichthys olivaceus). Single nucleotide polymorphisms (SNPs) marker is already in use widely for genomic research and breeding. But this SNPs marker hardly has been validated for screening functional genes in Olive flounder. We study identify single nucleotide polymorphisms (SNPs) on Expressed sequence tag (EST) database, develop usable SNP marker and apply to wild sample and cultured of olive flounder. As a result, Out of total 4.327 ESTs, 693contigs and 514 SNP from total contigs were detected while these substitutions include 297 transitions and 217 transversions. 144 developed markers were applied in 16 samples (wild 8, culture 8), Out of total marker, only 32 markers had detected polymorphic in sample. Polymorphism of 32 markers was observed in the variety genes region involved in immunity and protein synthesis. And the 32 marker were identified 21 transitions, 11 transversions, and indel was not detected in polymorphic SNPs. The analysis on heterozygosity by sample showed 0.34 in wild sample and 0.29 in cultured sample.
In conclusion, we was identified SNP and Polymorphism by designed new marker, it supports that development marker is suitable for SNP detection and diversity analysis in Olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.