축산 폐수는 고농도의 영양염류와 중금속을 함유하고 있어, 배출될 때 수질을 악화시킨다. 기존 처리 기술과 비교하여 bioremediation은 축산 폐수 처리에 유능하다. 특히, 미세조류는 오염물질 제거에 잠재력을 가지고 있다. 본 연구에서는 Ankistrodesmus bibraianus를 이용하여 축산 폐수 내 영양염류 (질소 (N), 인 (P))와 중금속 (구리 (Cu), 아연 (Zn))의 제거 가능성을 평가하고, A. bibraianus의 최적배양조건을 확립하였다. 연구결과, 최적 배양조건은 28°C, pH 7, 광주기는 14 : 10 h로 설정되었다. N과 P의 단일 처리구 (500, 1,000, 5,000, 10,000 mg L-1)에서 제거효율은 각각 22.9~80.6%와 11.9~50.0%였다. 또한, N과 P의 복합 처리구에서 제거효율은 각각 16.4~58.3%와 7.80~49.8%였다. Cu와 Zn의 단일 처리구 (10, 30, 50 mg L-1)에서 제거효율은 각각 15.5~81.5%와 6.28~34.3%였다. 유사하게, Cu와 Zn의 복합 처리구에서 제거효율은 각각 16.7~74.5%와 5.58~27.5%였다. 또한 영양염류 (N 및 P)와 중금속 (Cu 및 Zn)의 성장 및 제거효율을 축산 폐수에 적용할 수 있음을 나타냈다. 본 연구의 결과에 따르면 A. bibraianus는 축산 폐수 내 영양염류와 중금속 제거에 이용할 수 있을 것으로 사료된다.
In this study, the effects of single and binary heavy metals toxicity on the growth and phosphorus removal ability of Bacillus sp.. known as be a phosphorus-removing microorganism, were quantitatively evaluated. Cd, Cu, Zn, Pb, Ni were used as heavy metals. As a result of analysis of variance of the half of inhibition concentration and half of effective concentration for each single heavy metal treatment group, the inhibitory effect on the growth of Bacillus sp. was Ni < P b < Z n < Cu < C d. A nd the inhibitory effect on phosphorus removal by Bacillus s p. w as N i < Pb < Z n < Cu < C d. When analyzing the correlation between growth inhibition and phosphorus removal efficiency of a single heavy metal treatment group, a negative correlation was found (R2 = 0.815), and a positive correlation was found when the correlation between IC50 and EC50 was analyzed (R2 = 0.959). In all binary heavy metal treatment groups, the interaction was an antagonistic effect when evaluated using the additive toxicity index method. This paper is considered to be basic data on the toxic effects of heavy metals when phosphorus is removed using phosphorus removal microorganisms in wastewater.
This study was initiated to isolate the microorganisms removing phosphorus (P) from domestic sewage and to investigate the effects of environmental factors on the growth and P removal of the isolated bacteria. Microorganisms isolated from the sewage were identified as Chryseobacterium sp., Stenotrophomonas maltophilia, and Bacillus licheniformis. Among them, Bacillus licheniformis was selected as the P removal microorganism. The environmental factors considered in this study included initial phosphorus concentration, temperature, pH, and carbon source. At initial P concentrations of 10, 20, and 30 mg/L, the P removal efficiencies were 100.0%, 84.0%, and 16.5%, respectively. At 20°C, 30°C, and 40°C, the P removal efficiencies were 0%, 75.8%, and 60.6%, respectively. The removal efficiencies of phosphorus according to pH were 1.6%, 91.7%, and 51.1% at pH 5, pH 7, and pH 9, respectively. Using glucose, acetate, and glucose + acetate as carbon sources yielded P removal efficiencies of 80.9%, 33.6%, and 54.1%, respectively. Therefore, the results from the study demonstrated that the P removal efficiencies of Bacillus licheniformis were the highest when the initial P concentration, temperature, pH, and carbon source were 10 mg/L, 30°C, 7, and glucose, respectively.
This study was conducted to evaluate the effect of phosphorus acid (H3PO3) addition to the horticultural bed soil on the initial growth of red pepper (Capsicum annuum L. cv.), cucumber (Cucumis sativus L. cv.), and kimchi cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr. cv.). The stem heights of red pepper and cucumber were 46.1% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the untreated (control). Further, the stem diameter of pepper and cucumber were 48.7% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the control. In addition, the number of kimchi cabbage leaves was 47.5% greater in the 50 mg/L of phosphorus acid treatment than the control. The dry weights of red pepper, cucumber and kimchi cabbage were 72.9%, 16.5%, and 30.4% heavier in the 50 mg/L than the control, respectively. Cations (K, Ca, and Mg) and total phosphorus (T - P) were quantitatively analyzed for these three horticultural crops. The concentrations of K, Ca, and Mg, and T - P were higher in the 50 mg/L of phosphorus acid than the control, respectively. Based on the results obtained in this study, it appears that treatment of phosphorus acid in horticultural bed soil enhanced the growth of red pepper, cucumber and Kimchi cabbage.
Bioremediation has been recognized as a suitable alternative to conventional methods of removing contaminants, and it uses fungi, bacteria and microalgae. In contrast to other organisms, microalgae are unique in that they have the ability to perform photosynthesis like plants and to utilize organic/inorganic carbon substrates, in a process called phytoremediation. Microalgae can populate a reaction site rapidly and enhance the bioremediation efficiency. In this study, Chlorella vulgaris was used to evaluate the removal potentials of the nutrients (N and P) and heavy metals (Cu and Zn) from swine wastewater. The optimum growth conditions for Chlorella vulgaris and the removal potentials of N, P, Cu, and Zn from synthetic wastewater using Chlorella vulgaris were investigated. Based on the results, the applicability of this microalga to on-site wastewater treatment was examined. Optimal growth conditions for Chlorella vulgaris were established to be 28℃, a pH of 7, and light and dark cycles of 14:10 h. As the concentrations of the nutrients were increased, the efficiencies of N and P removal efficiencies by Chlorella vulgaris were decreased in the single and binary mixed treatments of the nutrients, respectively. Further, the efficiencies of Cu and Zn removal also decreased as the heavy metals concentrations added were increased, both in the single and binary mixed treatments. In addition, the efficiency of Cu removal was higher than that of Zn removal. Our results indicate that Chlorella vulgaris could be used in treatment plants for the removal of nutrients and heavy metals from swine wastewater.
This study was conducted to establish the type and method of fertilization for no-tillage during the third year of No-tillage (NT) and Conventional-tillage (CT) practices, towards different kinds of fertilizers. In this experiment, the livestock manure showed higher in response to fertilizer effects of no-tillage. Comparing growth characteristics and yield in NT and CT. Regarding yield, there is no significant between livestock fertilizer and chemical fertilizer, but between livestock fertilizer and chemical fertilizer in conventional fertilization has significant differences. Based on the result, livestock fertilizer is effective way on the quantity of the crop. Nitrogen absorption of plant in livestock of no-tillage is more effective than conventional fertilization. In case of the phosphorus absorption and potassium absorption of plant, fertilizer effect has no significant. Nitrogen is highly absorbed in livestock fertilization of NT. Absorption of phosphorus and potassium are similar.
The present study was conducted to establish the optimal fertilization type and method for no-tillage during the first year of No-tillage (NT) and Conventional-tillage (CT) practices for soybean, using different types of fertilizers. In this experiment, the culm length and stalk diameter showed a greater response to fertilization with surface irrigation than to conventional fertilization. The fastest flowering period (July 28) occurred using chemical fertilization applied via subsurface irrigation. Comparing maturation based on growth characteristics and flowering date revealed that fertilization with subsurface irrigation was more effective for the growth of crops than other methods. Regarding yield, there was no significant difference between livestock and chemical fertilizers in subsurface irrigation, but there were significant differences between these fertilizers when using conventional fertilization methods. Based on the results, livestock fertilizer with subsurface irrigation effectively enhanced crop quantity. Nitrogen absorption of plants using subsurface irrigation was more effective than that using conventional fertilization. Regarding phosphorus absorption of plants, chemical fertilizers showed higher absorption than did livestock fertilizers for both subsurface irrigation and conventional fertilization. Unlike nitrogen, phosphorus was highly absorbed using conventional fertilization. Absorption of phosphorus and potassium were similar but phosphorus was not absorbed using livestock fertilizers applied either using subsurface irrigation or with conventional fertilization.
본 연구는 벼종자 미량 단백질의 프로테오믹스 연구를 위하여 벼종자에 고 함량으로 존재하는 벼종자 글루테린 저장 단백질을 제거하는 방법에 관한 것이다. 따라서 본 연구는, (A) 벼종자에 액체 질소를 가하고 분쇄하여 벼종자 가루를 만드는 분쇄단계; (B) 상기 분쇄된 벼종자 가루를 물에 현탁하여 현탁액을 만드는 현탁단계; (C)상기 현탁액 중 미용해 물질을 제거하는 분리단계를 포함하는, 벼종자 미량 단백질의 프로테오믹스 연구를 위한 벼종자 글루테린 저장 단백질의 제거방법에 관하여 검토하였다. 본 연구의 결과, 단순하고 신속하며 저렴하고 효율적인 방법으로 미량 비글루테린 단백질들을 용이하게 동정할 수 있을 것으로 판단되었다.