In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
This study was carried out to investigate the response characteristics of a hydrogen sulfide electrochemical gassensor for several wastewater odors. At first, it was found that bubbling sampling method was superior toheadspace sampling method in terms of sensor sensitivity. High correlation between odor concentration and sensorresults was shown for two wastewater which were r=0.977 for food-waste recycling wastewater and r=0.997for food industry wastewater. On the other hand, no correlation (r=0.258) was found for plating wastewater,because hydrogen sulfide was not the main odorant for that.