검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu2+/polyacrylonitrile composite fibers were prepared by electrospinning, and then Cu/carbon nanofibers (denoted as Cu/ CNF-X; X = Cu content, 0, 3, or 5 wt%) were formed by calcining them. The effects of Cu2+ content and carbonization temperature on the conductivity and electrothermal conversion of Cu/CNF-X were investigated. The results revealed that the conductivity and electrothermal properties of Cu/CNF-X improve with the increase in the Cu2+ content and carbonization temperature. When the carbonization temperature was 800, 900, or 1000 °C, the conductivity of Cu/CNF-5 (0.08, 0.68, or 2.48 S/cm, respectively) increased to 1.6, 1.5, or 1.6 times that of Cu/CNF-0, respectively. The highest instantaneous surface temperatures of Cu/CNF-5 calcined at 800, 900, and 1000 °C (36, 145, and 270.2 °C, respectively) increased by 4, 25.5, and 44.6 °C, respectively, compared with those of the corresponding Cu/CNF-0 samples (32, 120.3, and 225.6 °C, respectively). Thus, the addition of a small amount of Cu2+ effectively improved the conductivity and electrothermal conversion performance of Cu/CNF-X, which has potential application value in industrial products in the future.
        4,000원