감성은 복잡하고 다양한 요인들에 의해 영향을 받기 때문에 다각적인 측면에서 고려되어야 한다. 본 연구에서는 심리 평가 척도의 하나인 각성(arousal) 지표와 다중 생체신호에서 추출된 생체지표 반응을 이용하여 중립 및 부정감성(슬픔, 공포, 놀람)의 분류하였다. 이를 위하여 감성에 따른 생체지표 반응의 차이를 확인하였고, 다중 신경망 알고리즘 기반의 감성 인식기를 적용하여 이들 감성이 얼마나 정확하게 분류되는가를 확인하였다. 총 146명의 실험 참가자(평균 연령 20.1±4.0, 남성 41%)를 대상으로 감성 유발 자극을 제시하고 동시에 생체신호(심전도, 혈류맥파, 피부전기활동)를 측정하였다. 또한 감성 유발 자극에 대한 심리 반응을 감성 평가 척도로 평가하였다. 측정된 생체신호에서 심박률(HR), NN 간격의 표준편차(SDNN), 혈류량(BVP), 맥파전달시간(PTT), 피부전도수준(SCL), 피부전도반응 (SCR)을 추출하였다. 결과 분석을 위하여 감성 자극에 대한 각성도와 안정 상태와 감성 상태의 생체지표 반응을 활용하였다. 또한 감성 분류를 위하여 다중 신경망 기반의 감성 인식기를 활용하였다. 그 결과, 감성에 따른 생체지표 반응의 차이를 확인하였고, 이들 감성의 분류 성능은 각성도와 모든 생체지표 특징들을 조합하였을 때 정확도가 가장 높음(86.9%)을 확인하였다. 본 연구는 심리 및 생체지표 추출과 기계학습 기술의 적용을 통하여 부정 감성을 분류할 수 있음을 제안하며, 이는 인간의 감성을 탐지하는 감성 인식 기술을 확립하는데 기여할 것으로 예상한다.
When a game was developed, it is impossible to predict the success of the game. Most game developers made a game play test stage in game development process. It is important factor that gamer have good emotion playing the game. There are many ways of gamer's emotion test such questionnaire suvey, EEG test and etc.. but their tests are hard to quantify the results. Gamer's emotion are evolveing according to playing the game. Gamer's emotions are one of important criteria that is used for choosing a game by gamers. Nevertheless, the emotion detection is not considered for play test, because of the difficulty. The emotions of each gamers are different because of their own skills, experiences, preferences, etc. In recent years, the emotion detection technology is evolved, but it is not enough to guarantee the accuracy. In this paper, we propose a hybrid emotion classification system by EEG(Electroencephalogram) test, questionnaire suvey and eyetracking.
This paper proposes an emotion classifier from EEG signals based on Bayesʼ theorem and a machine learning using a perceptron convergence algorithm. The emotions are represented on the valence and arousal dimensions. The fast Fourier transform spectrum analysis is used to extract features from the EEG signals. To verify the proposed method, we use an open database for emotion analysis using physiological signal (DEAP) and compare it with C-SVC which is one of the support vector machines. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the accuracy of the valence and arousal estimation is 67% and 66%, respectively. For the three-level class case, the accuracy is 53% and 51%, respectively. Compared with the best case of the C-SVC, the proposed classifier gave 4% and 8% more accurate estimations of valence and arousal for the two-level class. In estimation of three-level class, the proposed method showed a similar performance to the best case of the C-SVC.
최근에 사용자에 의한 대량의 텍스트 데이터가 발생하면서 사용자의 정보, 의견 등을 분석하는 오피니언 마이닝이 중요하게 부각되고 있다. 오피니언 마이닝 중 특히 정서 분석은 제품, 사회적 이슈, 정치인에 대한 호감 등에 대한 개인적 의견이나 정서를 분석하여 긍정, 부정이나 행복, 슬픔 등의 정서를 분석하는 연구 분야이다. 정서 분석을 위해서 정서 차원 이론의 정서가와 각성 차원의 2차원 공간을 사용하고, 이 공간에서 정서가 분포하는 영역을 설정하여 매핑하는 방법을 사용한다. 그러나 기존에는 정서의 분포 영역을 임의로 설정하는 문제가 있었다. 본 논문에서는 이 문제를 해결하기 위해, 한국어 정서 단어 목록을 사용해 사용자 설문을 실시하여 2차원 상에 12개 정서의 분포를 구성하였다. 또한 2차원 상의 특정 정서 상태가 여러 개의 정서에 중첩되는 경우, 정서에 소속될 확률을 사용한 룰렛휠 방법을 사용하여 하나의 정서를 선택하는 방법을 제안하였다. 제안한 방법을 사용하여 텍스트에서 정서 단어를 추출하여 텍스트를 정서로 분류할 수 있다.
본 연구는 사용자들이 웹 페이지에서 기본적으로 느끼는 감성을 분석한 후 감성척도(Image Scale)를 구성하여, 웹사이트 디자인과 감성의 관계를 분석하기 위한 연구이다. 웹사이트 감성유형 분류 및 감성척도 연구방법은 다음과 같다. 감성유형 분류는 문헌연구와 설문조사로 이루어 졌으며, 언어전문가 검증과 요인분석으로 이루어졌다. 감성척도 연구는 감성유형 분류 결과를 다차원척도 분석을 통해 이루어졌다. 또한, 웹사이트 디자인과 감성의 관계를 분석하기 위해서는 웹사이트 사용자 감성평가 설문을 통해, 감성유형에 따른 웹사이트 표본을 추출하였다. 추출된 표본을 감성척도 공간에 배치하여 감성과 웹사이트 디자인 관계를 분석하였다. 연구 결과는 다음과 같다. 웹페이지 대표 감성유형은 '상쾌함', '차분함', '고급스러움', '강렬함', '젊음', '독특함', '미래적임' 이다. 다차원척도로 형용사간의 유사성을 분석한 결과 '무겁다-가볍다'와 '부드럽다-딱딱하다'의 축으로 구성된 웹사이트 감성척도 공간을 구성하였다. 또한, 웹사이트 디자인 요소와 감성의 관계는 '딱딱하다-부드럽다' 느낌에서는 색채와 레이아웃의 영향이 가장 두드러졌으며, '가벼운-무거운' 느낌에서는 명도와 색상의 영향을 많이 받는 것으로 나타났다.