검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.10 구독 인증기관·개인회원 무료
        Medical cyclotrons have been used for dedicated medical of commercial applications such as positron emission tomography (PET) for the past tens of years. These cyclotron facilities have produced positron-emitting radionuclides (i.e. 11C, 13N, 15O, 18F, etc.). Among them, 18F, produced by 18O(p,n)18F reaction is the most widely used which has longer half-life (around 110 m) and lower energy of emitted positrons (around 0.63 MeV). Secondary neutrons produced during 18O(p,n)18F reaction could cause neutron activation of structures, systems, and components of cyclotron facilities. Therefore, International Atomic Energy Agency (IAEA) had addressed that during the operation of cyclotrons, concrete walls become radioactive over time and this radioactivity needs to be characterized for planning of the facility decommissioning. Moreover, several prior studies had estimated the neutron activation and levels of radioactivity of concrete wall of cyclotron facilities. Although those studies assessed the neutron activation of actual cyclotron facilities, however, the purpose of assessment was only for decommissioning each individual facility. Also, the assumptions, conditions or insights of conclusion may be limited to each individual case. For these reasons, this study focused on analysis of effects of major factors (e.g. concrete type, impurity contents of structural materials, etc.) about neutron activation of cyclotron facilities. In this study, the well-known methodology of neutron activation estimation was established and neutron activation products of concrete wall of cyclotron vault was calculated. Also, sensitivity analyses were conducted to figure out the effects of major factors of neutron activation and production of radioactive wastes during decommissioning of the facility. The methodology and results were validated by two steps: comparing with prior studies and comparing with another computer code. Concrete type did not affect that the decision of level of radioactivity waste criteria. Because of relatively longer half-lives, impurity contents of structural materials especially Co and Eu were turned out one of the most important factors for planning the facility decommissioning. It is hard to simply figure out the radioactivity levels of cyclotron facilities, however, rough predictions of minimum period for decay-in-storage as radioactive waste management can be possible with using information of thermal neutron spectra and major impurity nuclides (e.g. 59Co, 151Eu and 153Eu) for minimization of radioactive waste production and relief of charge of radioactive waste management.
        2.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        현재 의료분야에서는 방사선 차폐체로서 납(Pb)이 널리 쓰이고 있다. 하지만 납은 무게가 매우 무거워 납 치마 등의 방호복은 장시간 착용이 어려우며, 인체에 치명적인 납 중독의 위험이 상시 가지고 있다는 문제 점을 가지고 있다. 이러한 문제점을 해결하고자 납을 대체 할 수 있는 물질에 대한 많은 연구가 진행되고 있다. 현재 납의 대체물질로써 대표적인 바륨(Ba)과 요오드(I) 등은 우수한 차폐능을 가지고 있지만, 30keV 근처의 에너지 영역에서 특성 X선을 방출하는 특성을 가지고 있다. 환자나 방사선 종사자의 경우 차폐체를 인체에 접촉하고 있는 경우가 많으므로 차폐체에서 발생되는 특성 X선이 인체에 직접 조사되어 방사선 피 폭을 증가시킬 위험이 매우 높다. 본 연구에서는 바륨(Ba)과 요오드(I)등에서 발생되는 특성 X선을 제거하기에 적절한 이중구조 차폐체를 방사선 수송코드 중 하나인 FLUKA 수송코드를 개발하여 선행연구로서 진행된 MCNPX 시뮬레이션과 비 교 분석하여 이중구조 차폐체의 차폐율에 대한 신뢰성을 검증하고자 하였다. MCNPX와 FLUKA를 이용하 여 황산바륨(BaSO4)과 산화비스무스(Bi2O3)로 이루어진 다양한 두께조합의 이중구조 차폐체를 설계하였으 며, IEC61331-1에 제시된 모식도를 기하학적으로 동일하게 시뮬레이션 상에 구현하였다. 또한, 120 kVp 의 연속 X선 스펙트럼에 대한 차폐체의 투과스펙트럼과 흡수선량을 납과 비교 평가하였다. 평가결과, 0.3 mm-BaSO4/0.3 mm-Bi2O3 와 0.1 mm-BaSO4/0.5 mm-Bi2O3 구조에서는 33 keV와 37 keV의 특 성 X선을 모두 흡수하였으며, 90 keV 이상의 고에너지 X선에 대해서도 납과 거의 유사한 차폐효율을 보였 다. 또한, FLUKA의 수송코드는 33 keV 이하에서는 cut-off 가 발생하여 저에너지 X선 광자에 대한 전산모 사에 제약이 있지만, 40 keV 이상의 고에너지 영역에서 MCNPX와의 상대오차가 6 % 이내로 신뢰성이 매 우 우수하다는 것을 확인할 수 있었다.