검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated magnetite (Fe3O4-δ) has the capability of decomposing CO2 proportional to the δ-value at comparativelylow temperature of 300oC. To enhance the CO2 decomposition capability of Fe3O4-δ, (Fe1-xCox)3O4-δ and (Fe1-xMnx)3O4-δ weresynthesized and then reacted with CO2. Fe1-xCoxC2O4·2H2O powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and5:5 were synthesized by co-precipitation of FeSO4·7H2O and CoSO4·7H2O solutions with a (NH4)2C2O4·H2O solution. The samemethod was used to synthesize Fe1-xMnxC2O4·2H2O powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with aMnSO4·4H2O solution. The thermal decomposition of synthesized Fe1-xCoxC2O4·2H2O and Fe1-xMnxC2O4·2H2O was analyzedin an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at 450oCto produce activated powders of (Fe1-xCox)3O4-δ and (Fe1-xMnx)3O4-δ. The activated powders were reacted with a mixed gas(Ar:85%, CO2:15%) at 300oC for 12 hours. The exhaust gas was analyzed for CO2 with a CO2 gas analyzer. The decom-position of CO2 was estimated by measuring CO2 content in the exhaust gas after the reaction with CO2. For (Fe1-xMnx)3O4-δ,the amount of Mn2+ oxidized to Mn3+ increased as x increased. The δ value and CO2 decomposition efficiency decreased asx increased. When the δ value was below 0.641, CO2 was not decomposed. For (Fe1-xCox)3O4-δ, the δ value and CO2decomposition efficiency increased as x increased. At a δ value of 0.857, an active state was maintained even after 12 hoursof reaction and the amount of decomposed CO2 was 52.844cm3 per 1g of (Fe0.5Co0.5)3O4-δ.
        4,000원