Organic wastewater causes serious environmental pollution, and catalytic oxidation is promising technique for wastewater treatment. Developing green and effective catalysts is currently challenging. In this work, green synthesis of nano zerovalent iron loaded onto porous biochar derived from popcorn is conducted, and catalytic oxidation of Rhodamine B (RhB) is evaluated in the presence of H2O2. Effect of process factors is examined on catalytic performance for RhB removal. The mechanism of RhB removal is discussed by characterizations (Fourier transform infrared spectra and Raman) and UV–vis spectra. RhB removal is improved with high catalyst dosage, low initial RhB concentration, and high reaction temperature, while it is slightly influenced by carbonization temperature of biochar, H2O2 dosage and pH value. Under conditions of BC-250 1.0 g/L, H2O2 0.01 mol/L, pH 6.1, and temperature 30 °C, the removal rate of RhB is 92.27% at 50 min. Pseudo first-order kinetics is used to fitting experimental data, and the activation energy for RhB removal in BC-250/H2O2 system is 39 kJ/mol. RhB removal in BC-250/H2O2 system can be attributed to adsorption effect and catalytic oxidation with the dominant role of hydroxyl radical. This work gives insights into catalytic oxidation of organic wastewater using green catalyst.
고도산화공정(Advanced Oxidation Process, AOP) 중 하나인 펜톤 산화법은 과산화수소(H2O2)와 2가철 이온(Fe2+)이 반응하여 OH 라디칼을 생성함으로써, OH 라디칼의 강한 산화력으로 유기물을 분해하는 방법이다(Kim et al., 2016). 펜톤 산화는 다양한 유기물과의 높은 반응성을 지닌다는 점과 생물학적으로 분해가 어려운 물질을 산화·분해시켜 생물학적 처리가 가능하도록 한다는 등의 장점을 지니고 있다(Lee et al., 2003, Sung et al., 2006). 그러나, 펜톤 산화는 유기물과의 반응 후 펜톤 슬러지를 부산물로 다량 생성하기 때문에 발생된 슬러지를 처리하는 공정이 추가적으로 요구된다. 또한, 펜톤 슬러지는 다량의 난분해성 물질과 철염 등을 함유하고 있기 때문에 처리하는 방법이 까다롭다. 펜톤 슬러지는 주로 ‘매립’으로 처리하고 있으나 매립지 크기의 한계 및 수명 단축, 비싼 처리비용 등의 문제가 뒤따르기 때문에 이에 대한 대책이 필요한 실정이다. 본 연구에서는 펜톤 슬러지를 처리하는 방안으로 펜톤 산화용 철 촉매로의 재이용을 제안하였고, 크게 슬러지 용해, 슬러지 내 철 이온 전환, 철 촉매 실사용 단계로 나눠 연구를 진행하였다. 본 연구는 ‘D’ 산업용수센터에서 발생하는 RO 농축폐수를 펜톤 산화법으로 처리한 후 발생하는 펜톤 슬러지를 대상으로 실시하였다. 반고체 형태의 펜톤 슬러지에 산(acid)을 가하면 용해액 상태로 바뀌는데 이는 펜톤 슬러지 사용을 용이하게 만든다. 이에 pH, 반응시간 등의 실험 인자를 바꿔가며 슬러지 용해 최적조건을 찾고자 하였다. 한편, 펜톤 슬러지를 펜톤 산화용 철 촉매로 재이용하기 위해서는 용해된 펜톤 슬러지 내 철 형태가 2가철 이온으로 존재하는 것이 유리하다. 용해된 펜톤 슬러지 내 철 이온은 대부분 3가철 형태로 존재하는데 Zn, Cd, Cu 등의 금속, 요오드산, 철편 등의 환원제를 투입함으로써 3가철을 2가철 이온으로 환원할 수 있다. 본 연구에서는 영가철을 환원제로 사용하여 용해된 슬러지 내 철 이온을 2가철 이온으로 환원하였다. 용해된 펜톤 슬러지에 영가철을 투입하였고 pH, 반응시간, 영가철 투입량 등 반응 인자를 바꿔가며 펜톤 슬러지 내 2가철 이온 전환의 최적조건을 찾고자 하였다. 두 단계를 거쳐 생성된 펜톤 슬러지 기반의 철 촉매는 실제 RO 농축폐수를 펜톤 산화로 처리할 때 펜톤 산화 시약으로 사용하였으며, 실제 펜톤 산화에서 사용하는 2가철 촉매(FeSO4)와 비교하여 펜톤슬러지 기반의 철 촉매의 효율성을 평가하였다.