The purpose of the present study is to examine characteristics of hydrogen sulfide adsorption using iron-activated carbon composite adsorbents prepared by ferric nitrate and ferric chloride. Prepared adsorbents were discussed on H2S adsorption capacity. Also, adsorbents were analyzed by surface analysis methods for illustrating the physical characteristics of H2S adsorption. The breakthrough tests of H2S were conducted at 3,333 ppm of inlet concentration, demonstrating that the adsorption capacity for iron-activated carbon composite adsorbents was in order of FC_AC (Ferric chloride_Activated carbon), FN_AC (Ferric nitrate_Activated carbon), FC (Ferric chloride) and FN (Ferric nitrate). Adsorption capacity of FC was 0.06 g/g, whereas FC_AC showed the highest capacity of 0.171 g/g. All adsorbents exhibited the amorphous type in physical appearance based on XRD analysis and high Fe content based on EDS analysis. The surface areas of composites were increased by adding activated carbon, exhibiting better adsorption capacity.
The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.