Cnidium officinale M. is an important crop that is widely used as a raw material for health functional foods. However, it is experiencing cultivation difficulties due to climate change and abnormally high temperatures. In response to this problem, the characteristics and main causes of the high-temperature damage occurring in C. officinale M. cultivation fields were analyzed. A survey of five farmhouse fields in Jecheon and Bonghwa, major C. officinale M. cultivation areas in Korea in 2018, indicated that about 5% to 37% of the cultivation fields in Jecheon and 5% to 15% of the fields in Bonghwa died from wilting. The high-temperature damage of the C. officinale M. fields is divided into two categories: upper leaves drying due to solar radiation and temperature, and lower leaves dying serially to the radiant heat of the vinyl mulch. Damage caused by radiant heat was typically greater. This is due to the greenhouse effect that occurs in the small space between the black vinyl mulching and the soil. The heat radiated to the surface of the ridge creating an environmental condition that greatly exceeded the atmospheric temperature especially on hot days. As a result, short plants with underground parts, such as C. officinale M., can suffer more high-temperature damage than other plants, so it is considered that it is necessary to develop related technologies such as mulching materials that can reduce pavement temperature in the future.
본 연구는 머신러닝 기법을 토대로 15개 환경 변수를 활용하여 소나무재선충병의 위험지역 분포를 예측하였다. 연구는 최대 엔트로피 모델을 머신러닝 기법으로 활용하였고, 연구 지역은 경주이며 연구 기간은 2018∼2020년이다. 모델의 평가에는 AUC(area under the curve)를 이용하였다. 연구 지역에서 소나무재선충병의 감염목 핵심 분포 지역은 2018년 대비 2019년과 2020년에 각각 2.5배와 4.7배 확대되었다. 소나무재선충병의 감염목 분포 추정 모델의 AUC는 모든 해에 최소 0.86 이상이었다. 모델에서 가장 중요한 변수는 직전 해의 감염목 근접도 이었다. 지형과 도로와의 인접성, 목조건물 인접성, 5월 평균 기온도 중요한 변수이었다. 인간 활동과 매개충의 생장 환경이 소나무재선충병의 공간적 분포에 중요한 역할을 한다는 것을 의미한다. 나아가 연구의 결과는 감염목 분포 정보의 지속적인 구축과 공유가 소나무재선충병 예방을 위한 정책과 연구에 중요하다는 것을 시사한다.
The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
This study conducted the experiment for the development of the low pressure type SCR system. The experimental equipment of SCR system was installed, which was widely used as the nitrogen oxides abatement system, and the demonstration experiment was conducted to see that it met the Tier III regulation according to the IMO NOx Technical Code. The SCR system demonstration experiment was divided into three stages: SCR system component operation test, engine parameter test by engine load, and NOx abatement performance and ammonia slip verification test. The final performance of the SCR system was verified through analysis of NOx abatement performance and ammonia slip test results for each load variation.
Two sewage treatment facilities were selected to identify odor emission characteristics, focusing on volatile organic compounds (VOCs) and sulfur compounds. The complex odor, 5 kinds of sulfur compounds and 23 kinds of VOCs were analyzed from gas and sludge storages. Hydrogen sulfide was detected in the highest concentration and had the highest odor quotient among the odorous compounds monitored in this study, demonstrating that the contribution of hydrogen sulfide to the complex odor reached up to 90%. For VOCs, the overall contribution to the complex odor was not critical but VOCs can sufficiently trigger an odorous sensation because the sum of the odor quotient reached up to 2.89.
베트남은 풍부한 노동력을 바탕으로 빠르게 경제가 성장하고 있다. 국내 물류기업은 해외시장 진출을 위해 노력하고 있다. 해외 물류기업도 베트남 시장에 진출하면서 물류 네트워크를 확대해 나가고 있다. 이러한 상황에서 국내 물류기업들도 기회를 포착하여 베트남 시 장에 진출할 필요성을 실감하고 있다. 본 논문에서는 모방전략을 이용하여 국내 중견중소 물류기업의 베트남 물류시장 진출 전략 수립에 목 적을 두고 있다.
This study aimed to estimate the odor emission rate from swine nursery facilities (naturally and mechanically ventilated) using probability distribution. Odor occurrence trends in the study facilities were very different; odor concentration and gas flow had a lognormal distribution. Monte Carlo simulation was used to carry out the uncertainty analysis. Odor emission rate was found to range from 18.05 OU/sec (10th percentile) to 621.88 OU/ sec (90th percentile), and odor emission rate per head ranged from 0.02 OU/sec · head (10th percentile) to 0.64 OU/ sec · head (90th percentile).
The triboelectric property of a material is important to improve an efficiency of triboelectric generator(TEG) in energy harvesting from an ambient energy. In this study, we have studied the TEG property of a semicon-ducting SnO2 which has yet to be explored so far. As a counter triboelectric material, PET and glass are used. Verticalcontact mode is utilized to evaluate the TEG efficiency. SnO2 thin film is deposited by atomic layer deposition on bareSi wafer for various thicknesses from 5.2 nm to 34.6 nm, where the TEG output is increased from 13.9V to 73.5V. Tri-boelectric series are determined by comparing the polarity of output voltage of 2 samples among SnO2, PET, and glass.In conclusion, SnO2, as an intrinsic n-type material, has the most strong tendency to be positive side to lose the electronand PET has the most strong tendency to be negative side to get the electron, and glass to be between them. Therefore,the SnO2-PET combination shows the highest TEG efficiency.
This study investigated the emission characteristics of airborne particles and bacteria from six types of household vacuum cleaners in the closed chamber. A test cleaner without HEPA filter was examined focusing on the first one minute of initial operation, observing significant generation of airborne particles, and especially for particle size of 0.5 to 2.5 μm, the generation rate increased up to 68.5 × 103 particles/min. Concentrations of airborne particles and bacteria depends on the production year, the motor power, and the dust filter efficiency of the vacuum cleaner. The observed results should be taken into consideration in the design of the vacuum cleaner as well as how they are operated in indoor environment.
Pt nanopowder-dispersed SiO2 (SOP) films were prepared by RF co-sputtering method using Pt and SiO2 targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of SiO2 was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.
It has been more than twenty years since the application of GFRP bridge decks in construction fields. Recently, a few studies by governments and individual researchers have investigated in-use GFRP bridge decks. Areas of trouble include the problems of cracking, spalling and the de-bonding of the pavement or the wearing surface on GFRP bridge decks, all of which affect the long-term durability and serviceability of these new construction materials. Related to these problems, reflective cracks on asphalt pavement are directly related to pultruded GFRP bridge decks. This study investigates the behavior of an adhesive joint under weak-axis bending by tests and FE analyses to identify the causes of pavement cracks in in-use pultruded GFRP bridge decks. In detail, the flexural stiffness and the load-carrying capacities in strong and weak axes are measured during bending tests on pultruded GFRP decks. Next, tensile local failures of an epoxy adhesive due to the concentration of deformations at adhesive joints are identified via a weak-axis bending test. Finally, the tensile failure of an epoxy adhesive due to the local concentration of deformation at an adhesive joint under weak-axis bending is verified through a finite element analysis.
In recent days composite bridge decks are increasingly used to new and rehabilitated bridges due to their many advantages such as light weight, high strength, high durability, low maintenance costs and fast installation. To further promote usage of composite bridge decks, the authors have developed decks of new profile having innovative vertical snap-fit connection. Through this development, significant enhancement of constructability and economy are obtained by overcoming the drawbacks of conventional composite decks of tongue-and-groove connection. The paper introduces some research results and notable applications for the developed composite decks of snap-fit connection using for pedestrian bridges. Owing to their considerable advantages of the developed composite decks, increasing number of applications is currently underway in Korea.
유리섬유강화 폴리에스터(GFRP) 복합소재는 가볍고 내구성이 뛰어나 강재, 콘크리트, 나무 등과 같은 기존의 구조 재료들을 대체할 수 있는 재료로 최근 각광 받고 있다. GFRP 복합소재 데크를 조립하여 아치가교를 만들면 짧은 시간에 시공이 가능하고 복합소재 데크의 재사용이 가능할 수 있다. 이 논문에서는 쉽게 조립할 수 있는 수직결구식 복합소재 데크를 활용한 아치가교 시스템을 개발하고자 한다. 이를 위해 몇 가지 가능한 아치가교의 유형을 제안하고 이를 유한요소해석을 통해 검증한다.
본 연구에서는 개발된 중공단면 복합소재 교량 바닥판에 대해 피로거동을 평가하기 위하여 거더 지지부에서의 압축피로 시험과 2.8m 길이의 휨시험체 모델에 대한 휨피로시험을 수행하였다. 피로하중은 도로교설계기준의 제시된 DB24 트럭 후륜 축하중에 대해 200만회까지 반복 재하하였으며, 압축피로시험의 경우에는 복합소재 바닥판 부재와 바닥판 튜브간의 연결부에 대한 피로성능을, 휨피로시험의 경우에는 복합소재 바닥판 및 주형연결부에 대한 피로성능을 분석하였다.
본 논문에서는 설계와 해석을 거쳐 인발성형으로 제작된 중공단면 복합소재 교량 바닥판에 대해 휨 성능시험, 바닥판-거더 연결부시험, 바닥판-방호벽 연결부시험 등을 통해 구조적 특성을 분석하였다. 휨시험체에 지간 중앙에 변위계와 상 하부판의 주요부에 변형률계를 부착하여 파괴하중 재하시까지 거동을 계측하고 그 결과를 분석하였다. 휨시험체에 대한 유한요소해석도 실시하여 시험결과와 비교분석하였으며, 휨에 대한 극한 내하력을 추정하였다. 또한, 시범시공된 복합소재 바닥판 플레이트 거더 교량에 대한 현장 재하시험결과와 현장적용사례를 기술하였다.