In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.
The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems’ essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.
Structural analysis remains as an essential part of any integrated civil engineering system in today’s rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.
유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리잡고 있으며, 근래에는 다소 복잡한 동적 및 비선형 문제에도 사용이 일반화되고 있다. 이러한 거동 예측이 어려운 구조해석에도 구조물을 적절한 유한요소와 요소망으로 표현하면 신뢰있는 해석 결과를 얻을 수 있다. 구조물의 동적 또는 비선형 거동에는 예상하지 않은 부분에서 큰 변형이 일어날 수 있으며, 유한요소해석 과정에서 같은 요소망을 계속 사용하면 요소의 모양이 신뢰 범위 밖으로 변형될 수 있으므로 요소망 역시 동적으로 적응할 필요가 있다. 또한, 유한요소 프로그램의 사용자 요구 사항 중 하나가 실시간으로 빠르게 진행되는 것이므로 연산면에서 효율적이어야 한다. 본 연구는 시간영역 동적해석에서 전 단계 해석 결과를 사용하여 계산된 대표 변형률 값을 오차 평가에 사용하여 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 요소 세분화를 진행하여 동적으로 적응하는 요소망 형성 과정을 기술한다. 해석 중 과대하게 변형되는 요소는 모양계수 개념으로 방지한다. 간단한 프레임의 동적 유한 요소해석을 예제로 정확성과 연산 효율성을 보여준다. 본 연구에서 제시하는 적응적 유한요소망 형성 전략은 복잡한 동적 및 비선형 해석에 일반적으로 적용될 수 있다.
들보나 아치, 판재 그리고 쉘과 같은 박판구조물의 경계부근의 매우 좁은 영역에는 경계층이 존재하는데, 이 영역에서 해는 급격하게 변화하는 특이 거동을 나타낸다. 유한요소법을 이용하여 이러한 물체의 거동을 해석하는 경우, 이런 특이성을 묘사하기 위해 유한요소 체눈패턴이 대단히 중요한 역할을 한다. 이 논문은 경계층에 대한 이론적 해석과 최적의 체눈패턴을 형성하기 위한 가이드를 제시한다. 또한 이론적인 결과를 입증하는 예제도 소개하고자 한다.