구조물에 포함되어 있는 불확실성에 의한 영향은 논리적으로 구조물의 안전도 해석에 활용할 수 있는 신뢰성 평가방법에 의해 안전성 검토를 수행하는 것이 합리적일 것이다. 따라서 본 연구에서는 지진하중을 받는 사장교 구조물을 대상으로 확률유한요소법을 기존의 신뢰성이론에 적합하도록 정식화하여 구조물의 동적응답해석 및 신뢰성해석을 보다 효율적으로 수행할 수 있는 프로그램을 작성하였다. 이를 바탕으로 하여 확률변수에 따른 변위, 부재력 및 케이블긴장력 등에 대한 평균, 표준편차 및 변동계수 등을 검토함으로써 동적응답특성을 정량적으로 분석하였다. 또한 신뢰성지수 및 파괴확률을 검토하여 사장교 구조물의 안전성을 평가하였다.
This pa야r 15 an attempt to aα:ount for the uncertainty of the residual strength in the reliability
analysis of structural systems. For this purpose the stochastic finite element meth여(SFEM) is li띠<ed
to the system reliability analysis pr'∞edure. The stochastic finite element is known to be able to a more
explicitly ∞nsider the effect of uncerainties of material and g∞metric variables on those of load effects
in structural analysis prlα:edure. The method has been applied to system as well as comφnent reliability
analysis of a plane structure. Comparison of the results by the present approach is made with the
method in which the residual strength of f려led ∞mponent is treated as deterministic variable. Several
case studies have been carriE최 to show the effect of uncertainty in residual strength of a member after
failure. Is has been ∞nform어 that reidual strength very much affect the system reliability level. It can
be, hence, ∞ncluded that the uncertainties in the αlSt-ultimate behaviour may have to be t혀<en mto
account in the system reliability analy의s for a better a s않ssment of the system reliability especially
for a struct파e of which member behaviour is m여ell어 as asemi-brittle model.And then the sto .:hastic
finite element method can efh디ently evaluate the system reliability.
구조 공학에서의 고유치 문제는 좌굴해석, 진동해석 등 여러분야에 응용되고 있다. 일반적으로 구조물의 좌굴강도 해석에 사용되는 대부분의 변수들은 불확실성을 내포하고 있으므로 확률론적 해석을 수행해야 하지만, 구조물의 좌굴 신뢰성 해석을 위한 극한상태 방정식은 확률변수의 함수로 명확히 표현되지 않으므로 확률 유한 요소법의 사용이 필요하다. 따라서 본 논문에서는 직접미분법에 의해 정식화된 확률 유한요소법을 사용하여 고유치 문제의 신뢰성 해석방법을 정식화 하고, 이를 바탕으로 좌굴 신뢰성 해석을 수행하였으며, 결과의 타당성을 검증하기 위하여 Crude Monte Carlo Method 및 이 방법의 단점을 대폭 보완한 Importance Sampling Method를 사용하였다. 본 논문에 의해 좌굴 신뢰성 해석 방법이 정립됨으로서 신뢰성에 기초한 최적 설계를 수행하는 경우, 시스템 파괴확률로서 소성 파괴확률과 더불어 좌굴 파괴확률의 고려가 가능해졌다.
In countries that suffer from heavy rain such as Korea, bridges have to be prepared for a sudden water level increase. However, research on the flood risk assessment for bridges has gained less attention than earthquakes, even though one of the major causes of bridge failures has been reported to be flood. In addition, various sources of uncertainty make it challenging to evaluate the flood fragility of a bridge, and there have been few studies on the flood fragility curve derivation for bridges. The present study proposes a new methodology employing finite element reliability analysis to derive flood fragility curve. In the proposed method, two software packages, ABAQUS and FERUM, are connected so that reliability analysis can be performed in conjunction with sophisticated finite element analysis flood fragility assessment. The method is applied a real bridge in Korea, and flood fragility curves are derived for multiple damage states.