A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of 40 μm or more.
This study was examined the ovogenesis of Ussurian bullhead, Leiocassis ussuriensis and the morphological development of its larvae and juveniles and to use the results as basic information for the preservation of species and resource enhancement. For artificial egg collection, human chorionic gonadotropin (HCG) was injected at a rate of 10 IU per gram of fish weight. During breeding period, water temperature maintained at 24.5~26.5℃ (mean 25.0±0.05℃). The process of ovogenesis reached the two-cell stage in 50 minutes after fertilization. In 73 hours of fertilization the movement of the embryoid body became active state and the larvae began to hatch from the tail through the oolemma. Length of prelarvae were 6.33~6.50 mm long (mean 6.40±0.06 mm) just after hatching having yolk with their mouth not opened. After thirty eight days of hatching, juveniles were 30.6∼32.5 mm long (mean 31.5±0.65 mm). The color was dark yellowish brown throughout the entire body, and the number of caudal fin rays developed to thirty six perfectly.