검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.10 구독 인증기관·개인회원 무료
        Radionuclides stored in a radioactive waste repository over a long period of time might be leached through the barriers such as engineered rock (cement) and natural rock (granite). Organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) may also influence the mobility of radionuclides. In this study, a continuous fixed-column reactor packed with engineered and natural rocks was designed to investigate the effect of organic complexing agents on cesium mobility through cement and granite under anaerobic conditions. The influent flow rate of the mixed solution (organic complexing agent and cesium) at the column bottom was 0.1 mL/min, while that of groundwater was 0.2 mL/min, which was introduced between cement and granite layers in the middle of the column. The hydraulic properties such as diffusion coefficient and retardation factor were derived by a bromide tracer test. The effects of different operating parameters, such as initial cesium concentrations, initial EDTA or ISA concentrations, and bed size, on the cesium adsorption were investigated. The Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data to predict the breakthrough curves using non-linear regression. These results suggest that organic complexing agents such as EDTA and ISA significantly influence the mobility of cesium in the barriers, indicating that the presence of complexing agents enhances the migration of cesium to the geosphere.
        3.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.
        4.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixedbed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.